Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Britz, D.

  • Google
  • 1
  • 8
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Determination of grain size distribution of prior austenite grains through a combination of a modified contrasting method and machine learning9citations

Places of action

Chart of shared publication
Müller, M.
1 / 72 shared
Detemple, E.
1 / 3 shared
Laub, M.
1 / 1 shared
Bachmann, B.-I.
1 / 1 shared
Motz, Christian
1 / 5 shared
Scherff, F.
1 / 1 shared
Mücklich, F.
1 / 15 shared
Staudt, T.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Müller, M.
  • Detemple, E.
  • Laub, M.
  • Bachmann, B.-I.
  • Motz, Christian
  • Scherff, F.
  • Mücklich, F.
  • Staudt, T.
OrganizationsLocationPeople

article

Determination of grain size distribution of prior austenite grains through a combination of a modified contrasting method and machine learning

  • Britz, D.
  • Müller, M.
  • Detemple, E.
  • Laub, M.
  • Bachmann, B.-I.
  • Motz, Christian
  • Scherff, F.
  • Mücklich, F.
  • Staudt, T.
Abstract

<jats:title>Abstract</jats:title><jats:p>The prior austenite grain size (PAGS) represents one of the most significant microstructural parameters for steel research and process development. Since the PAGS directly correlates with recrystallisation during rolling in the manufacturing process of steel plates, it has a huge influence on its mechanical properties. Methods to determine the PAGS reliably and reproducibly are in high demand. There are several different approaches, based on different working principles, aiming to measure the PAGS. In this paper, the focus will be held on chemical etching methods because they allow, other than indirect techniques, space-resolved images as output, coupled with a fast application with good statistics and do not necessarily require a pretreatment of the specimen that can alter properties of interest. A parameter study has been conducted to identify unknown influencing variables as well as to tune well known parameters for their application to low-carbon steels. In the scope of this work, a novel and objective way of determining the PAGS is being presented. A reproducible approach has been developed that is able to automatically reconstruct the prior austenite grain boundaries (PAGB) from low-carbon steels and thereby determining the PAGS. Based on an improved etching recipe, a routine could be elaborated using modern methods of machine learning in the field of computer vision that is able to quantitatively analyze optical micrographs. Semantic segmentation is used to detect the PAGB based on correlative EBSD data and expert’s annotations; thus, reconstructing the prior morphological microstructure. Therefore, besides the determination of the average grain size, the distribution of the PAGS and their morphological parameters can be quantified.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • grain
  • grain size
  • steel
  • etching
  • electron backscatter diffraction
  • machine learning