People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cox, Joel D.
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Quantum-mechanical effects in photoluminescence from thin crystalline gold filmscitations
- 2024Quantum-mechanical effects in photoluminescence from thin crystalline gold filmscitations
- 2024Nonlocal effects in plasmon-emitter interactionscitations
- 2023Nonlinear Plasmonics in Nanostructured Phosphorenecitations
- 2023Nonlinear Plasmonics in Nanostructured Phosphorenecitations
- 2023Photoluminescence from Ultrathin Monocrystalline Gold Flakes
- 2023Photoluminescence from Ultrathin Monocrystalline Gold Flakes
- 2021Nonlinear plasmonic response in atomically thin metal filmscitations
- 2021Nonlinear plasmonic response in atomically thin metal filmscitations
- 2021Anisotropic second-harmonic generation from monocrystalline gold flakescitations
- 2021Anisotropic second-harmonic generation from monocrystalline gold flakescitations
- 2020Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systemscitations
- 2020Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systemscitations
- 2019Quantum effects in the acoustic plasmons of atomically thin heterostructurescitations
- 2019Quantum effects in the acoustic plasmons of atomically thin heterostructurescitations
Places of action
Organizations | Location | People |
---|
article
Nonlinear plasmonic response in atomically thin metal films
Abstract
<p>Nanoscale nonlinear optics is limited by the inherently weak nonlinear response of conventional materials and the small light-matter interaction volumes available in nanostructures. Plasmonic excitations can alleviate these limitations through subwavelength light focusing, boosting optical near fields that drive the nonlinear response, but also suffering from large inelastic losses that are further aggravated by fabrication imperfections. Here, we theoretically explore the enhanced nonlinear response arising from extremely confined plasmon polaritons in few-atom-thick crystalline noble metal films. Our results are based on quantum-mechanical simulations of the nonlinear optical response in atomically thin metal films that incorporate crucial electronic band structure features associated with vertical quantum confinement, electron spill-out, and surface states. We predict an overall enhancement in plasmon-mediated nonlinear optical phenomena with decreasing film thickness, underscoring the importance of surface and electronic structure in the response of ultrathin metal films.</p>