People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schmitz, Klaus-Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behavior
- 2021Fiber composite materials via coaxial, dual or blend electrospinningcitations
- 2021A hydrogel based quasi-stationary test system for in vitro dexamethasone release studies for middle ear drug delivery systems
- 2019Numerical simulation of the functionality of a stent structure for venous valve prosthesescitations
- 2018Development of biodegradable stents for the treatment of Eustachian tube dysfunctioncitations
- 2017Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents
- 2017Influence of bulk incorporation of FDAc and PTX on polymer propertiescitations
- 2016Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymerscitations
Places of action
Organizations | Location | People |
---|
article
Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behavior
Abstract
<jats:title>Abstract</jats:title><jats:p>The novel concept of stenting the Eustachian tube was established to provide an effective and safe therapy of Eustachian tube dysfunction. Biodegradable polymer stents are being developed to restore impaired tube function. As the supporting effect may be required for different time periods, PLA-co-PEG copolymers, PLLGA, PDLLA and PDS, having shorter degradation times compared to PLLA, were evaluated as potential stent materials. Since tensile tests and thermal analyses of solvent cast films from PLA-co-PEG copolymers showed comparable properties to PLLA, stent samples were manufactured from these materials. Mechanical stent testing revealed an increase of elastic recoil and slight decrease of collapse pressure compared to PLLA. In a short term accelerated degradation study a considerable percentage molar mass reduction and an increasing degree of crystallinity depending on PEG content was found. Based on the results obtained, the tested polymers offer a promising, faster degradable alternative to the established stent material PLLA.</jats:p>