People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vertchenko, Larissa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Optical properties of titanium nitride films under low temperature
- 2019Optical properties of titanium nitride films under low temperature
- 2019Cryogenic characterization of titanium nitride thin filmscitations
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
Places of action
Organizations | Location | People |
---|
article
Cryogenic characterization of titanium nitride thin films
Abstract
It is well known that noble metals are not compatible with silicon fabrication processing due to their low melting point, and that their plasmonic behaviour suffers from the material losses at visible wavelengths. As an alternative, titanium nitride has been highly investigated in order to overcome these challenges. High temperature characterization of TiN films has been performed, showing its CMOS compatibility; however, information on intrinsic losses at lower temperatures is still lacking. Here we experimentally investigate the optical properties of a 100 nm TiN film under low temperatures down to 1.5 K. From the reflection measurements we retrieve the dielectric constant and analyze plasmonic applications possibilities.