People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
White, Nicholas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Compact chirped-pulse amplification systems based on highly Tm3+ doped germanate fibercitations
- 2020Extruded tellurite antiresonant hollow core fiber for mid-IR operationcitations
- 2019Flexible Mid-IR fiber bundle for thermal imaging of inaccessible areas ; Flexibilní svazek vláken pro tepelné zobrazování nepřístupných oblastí ve střední infračervené oblasticitations
- 2019Flexible mid-IR fiber bundle for thermal imaging of inaccessible areascitations
- 2019Highly efficient Tm3+ doped germanate large mode area single mode fiber lasercitations
- 2019Highly efficient Tm 3+ doped germanate large mode area single mode fiber lasercitations
- 2014Fabrication of multiple parallel suspended-core optical fibers by sheet-stackingcitations
Places of action
Organizations | Location | People |
---|
article
Compact chirped-pulse amplification systems based on highly Tm3+ doped germanate fiber
Abstract
<p>We report the fabrication of a dual cladding large mode area thulium-doped germanate fiber (TDGF). The fiber has a core diameter of 20 µm, a high Tm<sup>3</sup><sup>+</sup> ion concentration of 3 cm<sup>3</sup> × 10<sup>20</sup>/cm<sup>3</sup>, and a hexagonal inner cladding to enhance pump absorption when cladding-pumped. Using a short fiber length, we demonstrate a compact 300 fs chirped-pulse amplification system operating at 1925 nm, investigating both core- and cladding-pumped implementations. By cladding pumping a 65 cm long fiber we produced an average power of 14.1 W (limited by thermally induced damage) and a peak power of 2.17 MW at a pulse repetition rate of 15.7 MHz. Core pumping a 19 cm length of TDGF produced 2.3 W of average-power and 16 MW peak-power pulses at 0.39 MHz. The performance is already comparable to the state-of-the-art success achieved with flexible silica fibers. Considering the rapid improvements in glass quality and the scope for further increasing the doping concentration, this fiber type holds great potential for pulsed fiber lasers in the 1.5-3 µm wavelength region.</p>