People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
White, Nicholas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Compact chirped-pulse amplification systems based on highly Tm3+ doped germanate fibercitations
- 2020Extruded tellurite antiresonant hollow core fiber for mid-IR operationcitations
- 2019Flexible Mid-IR fiber bundle for thermal imaging of inaccessible areas ; Flexibilní svazek vláken pro tepelné zobrazování nepřístupných oblastí ve střední infračervené oblasticitations
- 2019Flexible mid-IR fiber bundle for thermal imaging of inaccessible areascitations
- 2019Highly efficient Tm3+ doped germanate large mode area single mode fiber lasercitations
- 2019Highly efficient Tm 3+ doped germanate large mode area single mode fiber lasercitations
- 2014Fabrication of multiple parallel suspended-core optical fibers by sheet-stackingcitations
Places of action
Organizations | Location | People |
---|
article
Extruded tellurite antiresonant hollow core fiber for mid-IR operation
Abstract
We report the first extruded tellurite antiresonant hollow core fibers (HC-ARFs) aimed at the delivery of mid-infrared (Mid-IR) laser radiation. The preform extrusion fabrication process allowed us to obtain preforms with non-touching capillaries in a single step, hence minimizing thermal cycles. The fibers were fabricated from in-house synthetized tellurite glass (containing Zn, Ba and K oxides) and co-drawn with a fluorinated ethylene propylene (FEP) polymer outer layer to improve their mechanical properties and protect the glass from humidity. The fabricated HC-ARFs transmit in the Mid-IR spectral range from 4.9 to 6 µm. We measured losses of ∼8.2, 4.8 and 6.4 dB/m at 5 µm, 5.6 µm and 5.8 µm, respectively in two different fibers. These losses, which are dominated by leakage mostly arising from a non-uniform membrane thickness, represent the lowest attenuation reported for a tellurite-based HC-ARF to date. The fibers present good beam quality and an M2 factor of 1.2. Modelling suggests that by improving the uniformity in the capillary membrane thickness losses down to 0.05 dB/m at 5.4 µm should be possible, making this solution attractive, for example, for beam delivery from a CO laser.