People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Broadway, Christian Francis Benjamin
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2019Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applicationscitations
- 2018Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratingscitations
- 2018Largely tunable dispersion chirped polymer FBGcitations
- 2016Microstructured polymer optical fibre sensors for opto-acoustic endoscopycitations
Places of action
Organizations | Location | People |
---|
article
Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings
Abstract
We obtained chirped gratings by performing hot water gradient thermal annealing of uniform poly (methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg gratings (POFBGs). The proposed method’s simplicity is one of its main advantages because no special phase mask or additional etching are needed. It not only enables easy control tuning of the central wavelength and chirp characteristics, but it also leads to obtain flexible grating response, compared with tapered chirped POFBGs. Therefore, a flexible and low-cost chirped POFBG devices fabrication technique has been presented by using a single uniform phase mask.