People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petersen, Christian Rosenberg
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Rapid non-destructive inspection of sub-surface defects in 3D printed alumina through 30 layers with 7 μm depth resolutioncitations
- 2023Mid-IR Supercontinuum Noise Reduction Using a Short Piece of Normal Dispersion Fiber - A General Mechanismcitations
- 2021Influence of Thermo-Mechanical Mismatch when Nanoimprinting Anti-Reflective Structures onto Small-core Mid-IR Chalcogenide Fibers
- 2021Thermo-mechanical dynamics of nanoimprinting anti-reflective structures onto small-core mid-IR chalcogenide fiberscitations
- 2021Graded Index Chalcogenide Fibers with Nanostructured Corecitations
- 2019Chalcogenide glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generationcitations
- 2018Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infraredcitations
- 2018Multimaterial photonic crystal fiberscitations
- 2015Mid infrared supercontinuum generation from chalcogenide glass waveguides and fiberscitations
- 2015Mid-infrared supercontinuum generation in the fingerprint region
- 2014Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fiberscitations
- 2014Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibrecitations
- 2014Supercontinuum generation from ultraviolet to mid-infrared
- 2014Mid-infrared supercontinuum generation in concatenated fluoride and chalcogenide glass fibers covering more than three octaves
Places of action
Organizations | Location | People |
---|
article
Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers
Abstract
We theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (T FWHM =3.5ps, P 0 =20kW, ν R =30MHz, and P avg =2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.9–4.1μm SC at the −30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λ ZD W) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm. This allows the MIR solitons in the ZBLAN fiber SC to couple into anomalous dispersion in the chalcogenide fiber and further redshift out to the fiber loss edge at around 9μm. The final 0.9–9μm SC covers over 3 octaves in the MIR with around 15mW of power converted into the 6–9μm range.