People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brainis, Edouard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2015Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitrycitations
- 2014Tunable band structure in core-shell quantum dots through alloying of the core
- 2014Random-alloying induced signatures in the absorption spectra of colloidal quantum dotscitations
- 2007Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fibercitations
Places of action
Organizations | Location | People |
---|
article
Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fiber
Abstract
We present observations of quasi-phase matched parametric fluorescence in a periodically poled twin-hole silica fiber. The phase matching condition in the fiber enables the generation of a degenerate signal field in the fiber-optic communication band centered on 1556nm. We performed coincidence measurements and a Hong-Ou-Mandel experiment to validate that the signal arises from photon pairs. A coincidence peak with a signal to noise ratio (SNR) of 4 using 43mW of pump power and a Hong-Ou-Mandel dip showing 40% net visibility were measured. Moreover, the experiments were performed with standard single mode fibers spliced at both ends of the poled section, which makes this source easy to integrate in fiber-optic quantum communication applications.