Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ispas, Adriana

  • Google
  • 8
  • 28
  • 40

Technische Universität Ilmenau

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024A Novel Method for Preparation of Al–Ni Reactive Coatings by Incorporation of Ni Nanoparticles into an Al Matrix Fabricated by Electrodeposition in AlCl<sub>3</sub>:1‐Eethyl‐3‐Methylimidazolium Chloride (1.5:1) Ionic Liquid Containing Ni Nanoparticlescitations
  • 2023Electrochemical reduction of tantalum and titanium halides in 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquidscitations
  • 2022Hollow platinum-gold and palladium-gold nanoparticles: synthesis and characterization of composition-structure relationship5citations
  • 2021The need for digitalisation in electroplating – How digital approaches can help to optimize the electrodeposition of chromium from trivalent electrolytescitations
  • 2021The need for digitalisation in electroplating – How digital approaches can help to optimize the electrodeposition of chromium from trivalent electrolytescitations
  • 2020Electrocodeposition of Ni composites and surface treatment of SiC nano-particles19citations
  • 2017An electrochemical quartz crystal microbalance study on electrodeposition of aluminum and aluminum-manganese alloys16citations
  • 2007Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic Fieldcitations

Places of action

Chart of shared publication
Stich, Michael
1 / 2 shared
Graske, Marcus
1 / 1 shared
Riegler, Sascha
1 / 1 shared
Isaac, Nishchay A.
1 / 3 shared
Baumer, Christoph
1 / 1 shared
Ecke, Gernot
1 / 4 shared
Mejia, María Del Carmen
1 / 2 shared
Abdi, Azadeh
1 / 1 shared
Schaaf, Peter
1 / 29 shared
Gallino, Isabella
1 / 26 shared
Winter, Andreas
1 / 3 shared
Jacobs, Heiko O.
1 / 8 shared
Bund, Andreas
5 / 23 shared
Engemann, Thomas
1 / 1 shared
Lucero Lucas, Gisella Liliana
1 / 1 shared
Romanus, Henry
1 / 6 shared
Baumgartl, Hermann
1 / 1 shared
Leimbach, Martin
1 / 2 shared
Endrikat, Anna
1 / 1 shared
Büttner, Ricardo
1 / 1 shared
Sörgel, Timo
1 / 1 shared
Metzner, Martin
1 / 10 shared
Seifert, Thomas
1 / 25 shared
Feige, Katja
1 / 2 shared
Pinate, Santiago
1 / 5 shared
Zanella, Caterina
1 / 22 shared
Leisner, Peter
1 / 8 shared
Wolff, Elisabeth
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2017
2007

Co-Authors (by relevance)

  • Stich, Michael
  • Graske, Marcus
  • Riegler, Sascha
  • Isaac, Nishchay A.
  • Baumer, Christoph
  • Ecke, Gernot
  • Mejia, María Del Carmen
  • Abdi, Azadeh
  • Schaaf, Peter
  • Gallino, Isabella
  • Winter, Andreas
  • Jacobs, Heiko O.
  • Bund, Andreas
  • Engemann, Thomas
  • Lucero Lucas, Gisella Liliana
  • Romanus, Henry
  • Baumgartl, Hermann
  • Leimbach, Martin
  • Endrikat, Anna
  • Büttner, Ricardo
  • Sörgel, Timo
  • Metzner, Martin
  • Seifert, Thomas
  • Feige, Katja
  • Pinate, Santiago
  • Zanella, Caterina
  • Leisner, Peter
  • Wolff, Elisabeth
OrganizationsLocationPeople

article

The need for digitalisation in electroplating – How digital approaches can help to optimize the electrodeposition of chromium from trivalent electrolytes

  • Ispas, Adriana
Abstract

In order to make material design processes more efficient in the future, the underlying multidimensional process parameter spaces must be systematically explored using digitalisation techniques such as machine learning (ML) and digital simulation. In this paper we shortly review essential concepts for the digitalisation of electrodeposition processes with a special focus on chromium plating from trivalent electrolytes.

Topics
  • chromium
  • simulation
  • electrodeposition
  • machine learning