People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Jens Henrik
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023A modified split-Hopkinson pressure bar setup enabling stereo digital image correlation measurements for flexural testingcitations
- 2022The in-plane expansion of fractured thermally pre-stressed glass panescitations
- 2022High strain rate characterisation of soda-lime-silica glass and the effect of residual stressescitations
- 2021Tensile behaviour of soda-lime-silica glass and the significance of load duration – A literature reviewcitations
- 2021A connected glass community
- 2019Experimental Study of Residual Stresses in Hybrid Laser Arc and Submerged Arc-Welded 10-mm-Thick Low-Carbon Steel Platescitations
- 2019Experimental Study of Residual Stresses in Hybrid Laser Arc and Submerged Arc-Welded 10-mm-Thick Low-Carbon Steel Platescitations
- 2019An experimental investigation of the flexural strength of soda–lime–silica glass at high loading ratescitations
- 2019Architectural Glasscitations
- 2019A novel full-view split Hopkinson pressure bar technique for flexural testing
- 2016Stress relaxation in tempered glass caused by heat soak testingcitations
- 2016Stress relaxation in tempered glass caused by heat soak testingcitations
- 2016Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study
- 2013Numerical analyses of the effect of SG-interlayer shear stiffness on the structural performance of reinforced glass beams
- 2013A model for spalling of HPC thin plates exposed to firecitations
- 2013Fire performance of basalt FRP mesh reinforced HPC thin plates
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2009The Fracture Process of Tempered Soda-Lime-Silica Glasscitations
- 2007Mechanically reinforced glass beams
- 2007Mechanically reinforced glass beams
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
Places of action
Organizations | Location | People |
---|
document
Numerical analyses of the effect of SG-interlayer shear stiffness on the structural performance of reinforced glass beams
Abstract
This paper focuses on the numerical modelling of SentryGlas-laminated reinforced glass beams. In these beams, which have been experimentally investigated in preceding research, a stainless steel reinforcement section is laminated at the inner recessed edge of a triple-layer glass beam by means of SentryGlas (SG) interlayer sheets. The current contribution numerically investigates the effect of the SG-interlayer shear stiffness on the overall structural response of the beams. This is done by means of a 3D finite element model in which the individual glass layers, the SG-interlayers and the reinforcement are incorporated. In the model, the glass parts are allowed to crack, but all other parts are assumed linear elastic throughout the analyses. By changing the shear modulus of the SG-interlayer in multiple analyses, its contribution to the overall structural performance of the beams – especially at the post-breakage stage –is investigated. From the results of the analyses it is observed that the residual load-bearing capacity, i.e. the load-bearing capacity after glass fracture, increases with an increasing shear modulus of the SG-interlayer. Furthermore, the load-displacement response from the numerical model is predicting experimental observations very well. However, the crack pattern resulting from the numerical model is not matching the experimental observations. Further studies are thus needed to fully understand the mechanisms involved in the structural behaviour of SGlaminated reinforced glass beams.