People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Darr, J. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2012Phase stability and rapid consolidation of hydroxyapatite-zirconia nano-coprecipitates made using continuous hydrothermal flow synthesiscitations
- 2010Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cementscitations
- 2009Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (GIC)citations
- 2009Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applicationscitations
- 2008Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC)citations
- 2008Synthesis and characterisation of magnesium substituted calcium phosphate bioceramic nanoparticles made via continuous hydrothermal flow synthesiscitations
- 2008Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical propertiescitations
- 2008Synthesis of N-vinylpyrrolidone modified acrylic acid copolymer in supercritical fluids and its application in dental glass-ionomer cementscitations
- 2007Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation processcitations
- 2007Formation of porous natural-synthetic polymer composites using emulsion templating and supercritical fluid assisted impregnationcitations
- 2007Synthesis and characterization of grafted nanohydroxyapatites using functionalized surface agentscitations
- 2006Recent developments in processing and surface modification of hydroxyapatitecitations
- 2005Surface modification of bioceramics by grafting of tailored allyl phosphonic acidcitations
- 2003Synthesis and characterization of nano-biomaterials with potential osteological applicationscitations
Places of action
Organizations | Location | People |
---|
article
Surface modification of bioceramics by grafting of tailored allyl phosphonic acid
Abstract
A new route to interfacial bonding between ceramic and matrix in biocomposites is identified. A tailored allyl phosphonic acid is used as a coupling agent bound to the surface of a bioceramic to form a 'grafted' calcium phosphate (CAP). The allyl phosphonic acid coupling agent is synthesised by reaction of allyl halide and trialkyl phosphite. Successful synthesis was confirmed by nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The allyl phosphonic acid was incorporated onto calcium phosphate using a wet chemical coprecipitation synthesis route. The resulting 'grafted' CAP was characterised using FTIR coupled with photoacoustic sampling, and Fourier transform Raman spectroscopy (FTR). The spectroscopic data suggest an interaction between the allyl phosphonic acid and calcium phosphate resulting from observed reductions in intensity of the hydroxyl (3570 cm-1) and phosphate V3 (1030 cm-1) peaks. The continued presence of C=C functionality on the surface of the grafted CAP was indicated by FTIR and FTR spectra (peaks at 1650 and 1635 cm-1 respectively) and confirmed by X-ray photoelectron spectroscopy (XPS). On the basis of these results, it is concluded that grafted CAP may be used to produce a chemically bonded composite with superior mechanical properties. © 2005 Institute of Materials, Minerals and Mining.