People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skowrońska, Beata
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Selected properties of X120Mn12 steel welded joints by means of the plasma-MAG hybrid methodcitations
- 2023Assessment of Selected Structural Properties of High-Speed Friction Welded Joints Made of Unalloyed Structural Steelcitations
- 2022Solid-State Rotary Friction-Welded Tungsten and Mild Steel Jointscitations
- 2022Selected properties of RAMOR 500 steel welded joints by hybrid PTA-MAGcitations
- 2021Phase Structure Evolution of the Fe-Al Arc-Sprayed Coating Stimulated by Annealingcitations
- 2021Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusioncitations
- 2020Selected properties of hybrid PTA-MAG welded joints of thermomechanically rolled s700mc steelcitations
- 2020Structural investigation of the Plasma Transferred Arc hardfaced glass mold after operationcitations
- 2018Properties and microstructure of hybrid PLASMA+MAG welded joints of thermomechanically treated S700MC steel
Places of action
Organizations | Location | People |
---|
article
Selected properties of X120Mn12 steel welded joints by means of the plasma-MAG hybrid method
Abstract
<jats:p> The article describes properties of welds made of high wear resistance X120Mn12 steel obtained by the hybrid PTA-MAG (plasma transferred arc – metal active gas) method. The specimens were 8 mm thick rectangular (200 mm × 350 mm) sheets metal. The analyzed butt welds were made with the parameters selected according to the criterion of smallest cross-sectional area of welds and the narrowest HAZ (heat affected zone). The outcome of metallographic tests of weld, HAZ and parent material, hardness distribution and XRD (X-ray diffraction) patterns of selected areas are presented. The IIT (Instrumented Indentation Test) method was used to describe the distribution of mechanical properties shaped by thermal cycle annealing of the welding process. The investigation shows that the application of the PTA-MAG hybrid heat source for welding manganese steel enables the use of the filler material ER307 (AWS-A5.9). The hybrid PTA-MAG welding system has the relatively high potential to be an efficient alternative to welding standard processes for X120Mn12 steel due to the HAZ overheating limitation. The zone of high-risk weld cracking is the part of the HAZ close to the fusion area that has been reheated during weldment formation. Heat input about 0.6 kJ/mm is needed to provide full deep penetration butt weld without defects and with a vapor capillary of wide enough to cover the weld gap. The increase of hardness in the welded joint is smooth distributed and going up to 10% compared to the base material. The width of HAZ was <1 mm. Intensive carbides precipitation in HAZ has been avoided successfully. </jats:p>