People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ousji, Hamza
Carol I National Defence University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Experimental and Numerical Evaluation of Calcium-Silicate-Based Mineral Foam for Blast Mitigationcitations
- 2024Sacrificial cladding design for blast mitigation using low density crushable core systemscitations
- 2022Investigation of the Strain Rate Hardening Behaviour of Glass Fibre Reinforced Epoxy Under Blast Loadingcitations
- 2020Air-blast loading on empty metallic beverage can used as sacrificial cladding: Experimental, analytical and numerical studycitations
- 2016Experimental Study of the Effectiveness of Sacrificial Cladding Using Polymeric Foams as Crushable Core with a Simply Supported Steel Beamcitations
- 2015Explosive driven shock tube loading of aluminium plates: experimental studycitations
Places of action
Organizations | Location | People |
---|
article
Investigation of the Strain Rate Hardening Behaviour of Glass Fibre Reinforced Epoxy Under Blast Loading
Abstract
This work investigates the use of blast loadings and inverse modeling for the identification of the strain rate hardening model parameters of fibre reinforced polymers. An experimental setup allowing the generation of known and predictable blast waves, leading to repeatable dynamic response in composite plates and the measurement of the displacement and strain fields, is developed. The dynamic response of the plates is measured by means of high-speed cameras and a 3D digital image correlation technique. A suitable numerical model that is able to reproduce the experimental conditions and predict the blast response of the plates is developed. Finally, the experimental measurements and the numerical calculation are combined through an inverse method in order to identify the strain rate hardening model parameters of<br/>the tensile and shear strengths of glass fibre reinforced epoxy.