People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ardanuy, Mònica
Universitat Politècnica de Catalunya
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Mechanical performance of aged cement-based matrices reinforced with recycled aramid textile nonwoven fabric: Comparison with other FRCMs
- 2024Valorization of Textile Waste in Laminated Fabric Reinforced Cementitious Matrix Platescitations
- 2023Serviceability parameters and social sustainability assessment of flax fabric reinforced lime-based drywall interior panelscitations
- 2023Design and characterization of reversible thermodynamic SMPU-based fabrics with improved comfort propertiescitations
- 2023Design and characterization of reversible thermodynamic SMPU-based fabrics with improved comfort propertiescitations
- 2023Polyurethane shape memory filament yarns: Melt spinning, carbon-based reinforcement, and characterizationcitations
- 2022Durability of Eco-Friendly Strain-Hardening Cementitious Composite incorporating Recycled Textile Waste Fiber and Silica Fume
Places of action
Organizations | Location | People |
---|
article
Polyurethane shape memory filament yarns: Melt spinning, carbon-based reinforcement, and characterization
Abstract
<jats:p> The aim of this work was to develop and characterize polyurethane-based shape memory polymer filament yarns of a suitable diameter and thermo-mechanical performance for use in tailored multi-sectorial applications. Different polymer compositions – pure shape memory polyurethane and shape memory polyurethane composites with 0.3 and 0.5 wt.% of multi-walled carbon nanotubes or carbon black as additives – were studied. Filaments were obtained using a melt spinning process that allowed the production of the permanent and temporary shape of the shape memory polyurethane filament. Two drawing speeds (20 and 32 m/min) were studied. Characterization techniques such as the tensile test, differential scanning calorimetry, and dynamic mechanical analysis were used to investigate the shape-memory effect of the filaments. Pure and additive shape memory polyurethane filament yarns of a controlled diameter were produced. The results indicated that the pure shape memory polyurethane on the temporary shape had the highest tensile strength (234 MPa). Filaments with carbon black revealed a significant strain (335%) in the permanent shape with respect to the other filaments. The melt spinning process influenced the soft segment glass transition temperature (T<jats:sub>gs</jats:sub>) significantly, with a decrease in the temporary shape (first heating) as compared to the permanent shape (second and third heating). However, only the 0.5% multi-walled carbon nanotubes additive clearly influenced the filament, increasing the T<jats:sub>gs</jats:sub> by 10°C. The additives also influenced the shape-memory effect, obtaining an increased fixity ratio (up to 97%) with the multi-walled carbon nanotubes additive and an increased recovery ratio (up to 86%) with the carbon black additive. </jats:p>