Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matos, Carlos

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Insights into morphology and mechanical properties of architected interpenetrating aluminum-alumina composites2citations

Places of action

Chart of shared publication
Olhero, Susana M.
1 / 3 shared
Miranda, Georgina
1 / 9 shared
Santos, Simão
1 / 1 shared
Duarte, Isabel
1 / 12 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Olhero, Susana M.
  • Miranda, Georgina
  • Santos, Simão
  • Duarte, Isabel
OrganizationsLocationPeople

article

Insights into morphology and mechanical properties of architected interpenetrating aluminum-alumina composites

  • Olhero, Susana M.
  • Miranda, Georgina
  • Santos, Simão
  • Matos, Carlos
  • Duarte, Isabel
Abstract

Additive manufacturing (AM) technologies are unleashing the restrictions imposed by conventional manufacturing, allowing the production of innovative designs tailored to improve properties or performance. AM techniques in ceramic production allow the application of novel designs to ceramic parts, opening new opportunities for combining technologies aiming to obtain architected interpenetrating phase composites (IPCs). In this study, alumina structures with different architectures and Computer Aided Design (CAD) structure porosity oriented unidirectionally or bidirectionally, were fabricated by vat photopolymerization technique, namely Digital Light Processing. Afterwards, these structures were infiltrated with an aluminum alloy through investment casting, thus obtaining aluminum-alumina IPCs. Under compression, the IPCs presented a ductile behavior, conversely to the fragile ceramic counterparts. The IPCs compressive strength and absorbed energy were expressively higher than their ceramic counterparts. Comparing the bidirectional IPCs with the unidirectional ones, a significant increase in compressive strength and absorbed energy was observed, from 36.2% to 42.3% and from 164.8% to 358.1%, respectively, due to the greater amount and interconnection of the metal inside the ceramic structure. This study demonstrates the feasibility of this manufacturing route, combining two distinctive technologies, for the fabrication of metal-ceramic architected IPCs, allowing to tailor their mechanical properties and energy absorption capacity for a given application.

Topics
  • morphology
  • phase
  • aluminium
  • strength
  • composite
  • porosity
  • ceramic
  • collision-induced dissociation
  • investment casting
  • vat photopolymerization
  • ion-pair chromatography