People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gerritzen, Johannes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Graph based process models as basis for efficient data driven surrogates - Expediting the material development process
- 2024A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRPcitations
- 2023Modelling delamination in fibre-reinforced composites subjected to through-thickness compression by an adapted cohesive law
- 2023Development and verification of a cure-dependent visco-thermo-elastic simulation model for predicting the process-induced surface waviness of continuous fiber reinforced thermosetscitations
- 2023Modelling of composite manufacturing processes incorporating large fibre deformations and process parameter interactions
- 2022A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameterscitations
- 2022Development of a high-fidelity framework to describe the process-dependent viscoelasticity of a fast-curing epoxy matrix resin including testing, modelling, calibration and validationcitations
- 2021Contribution to Digital Linked Development, Manufacturing and Quality Assurance Processes for Metal-Composite Lightweight Structurescitations
- 2020Robust development, validation and manufacturing processes for hybrid metal-composite lightweight structures
Places of action
Organizations | Location | People |
---|
article
Development and verification of a cure-dependent visco-thermo-elastic simulation model for predicting the process-induced surface waviness of continuous fiber reinforced thermosets
Abstract
<p>Process-induced surface waviness effects represent a major concern for series production of high-quality lightweight structures based on fiber reinforced plastics (FRP). This paper suggests a method for the numerical prediction of these effects by using the example of processing glass fiber reinforced plastics (GFRP) in a resin transfer molding (RTM) process. The influence of reaction kinetics, chemical shrinkage and cure-dependent viscoelastic properties of the resin are taken into account. Furthermore, the dependence of surface quality on curing cycle, consolidation pressure, textile architecture and thickness of neat resin layer (NRL) at the part surface are investigated. The work is based on published material data and a visco-thermo-elastic simulation approach which has been previously presented and validated. All numerical results are compared to the surfaces of FRP plates that were manufactured with the corresponding parameter variations. Based on a literature survey, different surface waviness values have been identified for comparison of experimental and numerical results. Satisfactory agreement between experiments and simulations is found. Furthermore, it is shown that the analyzed NRL thickness has no relevant influence on the surface waviness while the curing temperature significantly affects the surface waviness. The role of relaxation-induced change of the surface waviness is highlighted by performing long-term measurements and corresponding time-dependent simulations. It is concluded that relaxation plays a decisive role in the appropriate selection of the subsequent surface finishing process. The suggested simulation approach provides a basis for optimization strategies to improve surface quality and reduce post-processing effort.</p>