People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, Jml
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethanecitations
- 2006Freeze-thaw and thermal degradation influence on the fracture properties of carbon and glass fiber reinforced polymer concretecitations
- 2006Influence of thermal cycles on the fracture properties of fiber reinforced polymer concrete
- 2004A contribution to the study of the fracture energy of polymer concrete and fibre reinforced polymer concretecitations
- 2004Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fiberscitations
- 2004Fracture energy of polymer concrete reinforced with short carbon and glass fibers
- 2003Fracture behavior of glass fiber reinforced polymer concretecitations
- 2003The influence of notch depth on the fracture mechanics properties of polymer concretecitations
- 2003A NDT assessment of fracture mechanics properties of fiber reinforced polymer concretecitations
Places of action
Organizations | Location | People |
---|
article
Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethane
Abstract
Composite structures currently used in the oil industry must meet strict requirements for design and safety reasons. They need to maintain strength under varied displacement rates throughout its lifetime. It is therefore critical to fully understand the fracture behavior of such composites. This work presents experimental results regarding the influence of a range of displacement rates on the fracture energy in mode I, G(Ic), of glass fiber reinforced polyurethane used in the oil industry to repair and reinforce pipelines with corrosion damage. To determine G(I)(c) as a function of displacement rate, double cantilever beam specimens were tested, with displacement rates of 2, 20 and 200 mm/min with different thicknesses. A complementary numerical study was performed with the aim of predicting strength using the measured values. This work has demonstrated a significant influence of the strain rate and composite thickness on G(IC) of the composite materials, with higher rates and thicker specimens causing an increase in the G(IC) values.