People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karakoç, Alp
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Design, Fabrication, and Characterization of 3D-Printed Multiphase Scaffolds Based on Triply Periodic Minimal Surfacescitations
- 2023Effects of leaflet curvature and thickness on the crimping stresses in transcatheter heart valvecitations
- 2023Low-cost thin film patch antennas and antenna arrays with various background wall materials for indoor wireless communicationscitations
- 2022Predicting the upper-bound of interlaminar impact damage in structural composites through a combined nanoindentation and computational mechanics techniquecitations
- 2022Simplified indentation mechanics to connect nanoindentation and low-energy impact of structural composites and polymers
- 2021Effect of single-fiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber compositescitations
- 2021Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturingcitations
- 2021Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyratecitations
- 2020Data-Driven Computational Homogenization Method Based on Euclidean Bipartite Matchingcitations
- 2020Mechanical and thermal behavior of natural fiber-polymer composites without compatibilizerscitations
- 2020A predictive failure framework for brittle porous materials via machine learning and geometric matching methodscitations
- 2020Comparative screening of the structural and thermomechanical properties of FDM filaments comprising thermoplastics loaded with cellulose, carbon and glass fiberscitations
- 2020Comparative screening of the structural and thermomechanical properties of FDM filaments comprising thermoplastics loaded with cellulose, carbon and glass fiberscitations
- 2019Machine Learning assisted design of tailor-made nanocellulose filmscitations
- 2018Stochastic fracture of additively manufactured porous compositescitations
- 2016Shape and cell wall slenderness effects on the stiffness of wood cell aggregates in the transverse planecitations
- 2016Modeling of wood-like cellular materials with a geometrical data extraction algorithmcitations
- 2013Effective stiffness and strength properties of cellular materials in the transverse planecitations
Places of action
Organizations | Location | People |
---|
article
Design, Fabrication, and Characterization of 3D-Printed Multiphase Scaffolds Based on Triply Periodic Minimal Surfaces
Abstract
The present work investigates the influence of material phases and their volume fractions on the elastic behavior of triply periodic minimal surface (TPMS) scaffolds for the potential modeling of bone scaffolds. A graphical tool using TPMS functions, namely Schwarz-D (diamond), gyroid, and modified gyroid, was developed and used to design and additively manufacture 3D multiphase scaffold models. A PolyJet, UV-cured 3D-printer system was used to fabricate the various TPMS scaffold models using three polymer materials with high, medium, and low stiffness properties. All TPMS models had the same volume fractions of the three polymer materials. Final models were printed into cylinders with a diameter of 20 mm and a height of 8 mm for mechanical testing. The models were subjected to compressive and shear testing using a dynamic mechanical analysis rheometer. All samples were tested at physiologically relevant temperature (37°C) to provide detailed structural characterizations. Microscopic imaging of 3D-printed scaffold longitudinal and cross sections revealed that additive manufacturing adequately recreated the TPMS functions, which created anisotropic materials with variable structures in the longitudinal and transverse directions. Mechanical testing showed that all three TPMS 3D-printed scaffold types exhibited significantly different shear and compressive properties (verifying anisotropic properties) despite being constructed of the same volume fractions of the three UV-printed polymer materials. The gyroid and diamond scaffolds demonstrated complex moduli values that ranged from 1.2 to 1.8 times greater than the modified gyroid scaffolds in both shear and compression. Control scaffolds printed from 100% of each of the three polymers had statistically similar mechanical properties, verifying isotropic properties.