People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Komalnu Raghavan, Ishwarya
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Optimizing the Parameters of Zirconium Carbide and Rice Husk Ash Reinforced with AA 2618 Compositescitations
- 2022Influence of Aluminum Silicate and Cerium (IV) Oxide Nanofluid on Pool Boiling Characteristicscitations
- 2022Investigation on Wear Characteristics of AZ91D/Nanoalumina Compositescitations
Places of action
Organizations | Location | People |
---|
article
Investigation on Wear Characteristics of AZ91D/Nanoalumina Composites
Abstract
<jats:p>This paper discusses the wear and friction with the 2 W% Al2O3 nanocomposite content of pure Mg and AZ91D Mg alloys. Sliding speeds of 0.5 and 1.5 m/s in cast materials with normal stress conditions have been used in sliding distances up to 2000 m/s (0.5, 1.0, and 1 MPa). In order to evaluate the work hardness of the materials measured on temperature similar to the contact surface, we used hardness patterns and hot-compression flow curves. Mg and AZ91D magnesium alloy pure monolithic Mg are low wear resistant due to an increase in contact temperature due to the adjustment of working conditions, but the wear rate was significantly lower in composite materials, mainly because of nanoparticle strength improvements. Although wear generally contributes to grain refining, increased wear capacity, and greater durability, wear resilience due to dislocation resistance and nanoparticles is seen as the primary wear mechanism in the existing nanocomposites.</jats:p>