People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krause, Simon
Max Planck Institute for Solid State Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Construction of Multi-Stimuli Responsive Highly Porous Switchable Frameworks by In-Situ Solid-State Generation of Spiropyran Switchescitations
- 2023Construction of Multi‐Stimuli Responsive Highly Porous Switchable Frameworks by <i>In‐Situ</i> Solid‐State Generation of Spiropyran Switchescitations
- 2023On the role of history-dependent adsorbate distribution and metastable states in switchable mesoporous metal-organic frameworkscitations
- 2022Cooperative light-induced breathing of soft porous crystals via azobenzene bucklingcitations
- 2021Charting the Complete Thermodynamic Landscape of Gas Adsorption for a Responsive Metal-Organic Frameworkcitations
- 2020Engineering micromechanics of soft porous crystals for negative gas adsorptioncitations
- 2020In Situ Imine-Based Linker Formation for the Synthesis of Zirconium MOFs: A Route to CO2 Capture Materials and Ethylene Oligomerization Catalystscitations
- 2018Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworkscitations
- 2013Polar Liquid Crystal Elastomers Cross Linked Far from Thermodynamic Phase Transitions: Dislocation Loops in Smectic Clusterscitations
- 2013Polar Liquid Crystal Elastomers Cross Linked Far from Thermodynamic Phase Transitions: Dislocation Loops in Smectic Clusterscitations
Places of action
Organizations | Location | People |
---|
article
Polar Liquid Crystal Elastomers Cross Linked Far from Thermodynamic Phase Transitions: Dislocation Loops in Smectic Clusters
Abstract
<jats:p>Nematic networks with three different concentrations of polar and nonpolar mesogens and the same concentration of a novel cross-linking agent give rise to unusual liquid single crystal elastomers (LSCEs) that are transparent monodomain nematic networks with smectic clusters. The largest spontaneous length change is observed in the sample with 70 mol% of the polar mesogen which also has the highest glass transition temperature and smectic clusters with a slowly increasing but nearly constant layer spacing on cooling from 90°C to 25°C. X-ray scattering intensity from smectic clusters with layer spacings that monotonically increase on cooling first increases to a maximum at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>*</mml:mi></mml:mrow></mml:msup><mml:mo>~</mml:mo><mml:msup><mml:mrow><mml:mn mathvariant="normal">60</mml:mn></mml:mrow><mml:mrow><mml:mo>∘</mml:mo></mml:mrow></mml:msup></mml:math>C corresponding to clusters of about 30 layers. Below<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>, the scattering intensity decreases as the number of layers in a cluster decreases. To account for this surprising nonlinear behavior that correlates with nonlinear features of the networks’ macroscopic spontaneous shape change and birefringence, a model is proposed where dislocations form in the layers at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>. Below<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>, more dislocations form to break down the layer structure. The possibility of dislocation formation at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>independent of mesogenic concentrations is attributed to a conformational change in the crosslinker which is present at the same concentration in the three LSCEs.</jats:p>