Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krause, Simon

  • Google
  • 10
  • 46
  • 277

Max Planck Institute for Solid State Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Construction of Multi-Stimuli Responsive Highly Porous Switchable Frameworks by In-Situ Solid-State Generation of Spiropyran Switches19citations
  • 2023Construction of Multi‐Stimuli Responsive Highly Porous Switchable Frameworks by <i>In‐Situ</i> Solid‐State Generation of Spiropyran Switches19citations
  • 2023On the role of history-dependent adsorbate distribution and metastable states in switchable mesoporous metal-organic frameworks10citations
  • 2022Cooperative light-induced breathing of soft porous crystals via azobenzene buckling62citations
  • 2021Charting the Complete Thermodynamic Landscape of Gas Adsorption for a Responsive Metal-Organic Framework32citations
  • 2020Engineering micromechanics of soft porous crystals for negative gas adsorption39citations
  • 2020In Situ Imine-Based Linker Formation for the Synthesis of Zirconium MOFs: A Route to CO2 Capture Materials and Ethylene Oligomerization Catalysts30citations
  • 2018Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks60citations
  • 2013Polar Liquid Crystal Elastomers Cross Linked Far from Thermodynamic Phase Transitions: Dislocation Loops in Smectic Clusters3citations
  • 2013Polar Liquid Crystal Elastomers Cross Linked Far from Thermodynamic Phase Transitions: Dislocation Loops in Smectic Clusters3citations

Places of action

Chart of shared publication
Feringa, Ben L.
3 / 31 shared
Ciesielski, Artur
2 / 32 shared
Comotti, Angiolina
2 / 16 shared
Bracco, Silvia
2 / 13 shared
Sheng, Jinyu
2 / 4 shared
Danowski, Wojciech
3 / 9 shared
Perego, Jacopo
2 / 9 shared
Czepa, Włodzimierz
2 / 6 shared
Sozzani, Piero
1 / 3 shared
Sozzani, Piero Ernesto
1 / 9 shared
Getzschmann, Jürgen
1 / 3 shared
Kaskel, Stefan
6 / 52 shared
Evans, Jack D.
4 / 7 shared
Dvoyashkin, Muslim
1 / 1 shared
Bon, Volodymyr
5 / 11 shared
Walenszus, Francesco
2 / 3 shared
Browne, Wesley R.
1 / 11 shared
Grimm, Nico
1 / 1 shared
Ehrling, Sebastian
3 / 3 shared
Crespi, Stefano
1 / 6 shared
Wallacher, Dirk
2 / 4 shared
Weiss, Manfred S.
3 / 4 shared
Többens, Daniel M.
2 / 10 shared
Verstraelen, Toon
1 / 7 shared
Goeminne, Ruben
1 / 5 shared
Llewellyn, Philip L.
1 / 8 shared
Zheng, Bin
1 / 1 shared
Maurin, Guillaume
2 / 19 shared
Senkovska, Irena
3 / 5 shared
Yot, Pascal G.
1 / 1 shared
Coudert, François Xavier
1 / 1 shared
Iacomi, Paul
2 / 2 shared
Lübken, Tilo
1 / 3 shared
Arrozi, Ubed S. F.
1 / 1 shared
Stoeck, Ulrich
1 / 2 shared
Yot, Pascal
1 / 5 shared
Coudert, François-Xavier
1 / 40 shared
Evans, Jack
1 / 7 shared
Llewellyn, Philip
1 / 3 shared
Yamaguchi, Shohei
2 / 2 shared
Okabe, Hirotaka
1 / 1 shared
Kai, Shoichi
2 / 2 shared
Yusuf, Yusril
2 / 3 shared
Finkelmann, Heino
2 / 2 shared
Kawano, Shinya
2 / 2 shared
Cladis, P. E.
2 / 2 shared
Chart of publication period
2024
2023
2022
2021
2020
2018
2013

Co-Authors (by relevance)

  • Feringa, Ben L.
  • Ciesielski, Artur
  • Comotti, Angiolina
  • Bracco, Silvia
  • Sheng, Jinyu
  • Danowski, Wojciech
  • Perego, Jacopo
  • Czepa, Włodzimierz
  • Sozzani, Piero
  • Sozzani, Piero Ernesto
  • Getzschmann, Jürgen
  • Kaskel, Stefan
  • Evans, Jack D.
  • Dvoyashkin, Muslim
  • Bon, Volodymyr
  • Walenszus, Francesco
  • Browne, Wesley R.
  • Grimm, Nico
  • Ehrling, Sebastian
  • Crespi, Stefano
  • Wallacher, Dirk
  • Weiss, Manfred S.
  • Többens, Daniel M.
  • Verstraelen, Toon
  • Goeminne, Ruben
  • Llewellyn, Philip L.
  • Zheng, Bin
  • Maurin, Guillaume
  • Senkovska, Irena
  • Yot, Pascal G.
  • Coudert, François Xavier
  • Iacomi, Paul
  • Lübken, Tilo
  • Arrozi, Ubed S. F.
  • Stoeck, Ulrich
  • Yot, Pascal
  • Coudert, François-Xavier
  • Evans, Jack
  • Llewellyn, Philip
  • Yamaguchi, Shohei
  • Okabe, Hirotaka
  • Kai, Shoichi
  • Yusuf, Yusril
  • Finkelmann, Heino
  • Kawano, Shinya
  • Cladis, P. E.
OrganizationsLocationPeople

article

Polar Liquid Crystal Elastomers Cross Linked Far from Thermodynamic Phase Transitions: Dislocation Loops in Smectic Clusters

  • Yamaguchi, Shohei
  • Kai, Shoichi
  • Yusuf, Yusril
  • Krause, Simon
  • Finkelmann, Heino
  • Kawano, Shinya
  • Cladis, P. E.
Abstract

<jats:p>Nematic networks with three different concentrations of polar and nonpolar mesogens and the same concentration of a novel cross-linking agent give rise to unusual liquid single crystal elastomers (LSCEs) that are transparent monodomain nematic networks with smectic clusters. The largest spontaneous length change is observed in the sample with 70 mol% of the polar mesogen which also has the highest glass transition temperature and smectic clusters with a slowly increasing but nearly constant layer spacing on cooling from 90°C to 25°C. X-ray scattering intensity from smectic clusters with layer spacings that monotonically increase on cooling first increases to a maximum at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>*</mml:mi></mml:mrow></mml:msup><mml:mo>~</mml:mo><mml:msup><mml:mrow><mml:mn mathvariant="normal">60</mml:mn></mml:mrow><mml:mrow><mml:mo>∘</mml:mo></mml:mrow></mml:msup></mml:math>C corresponding to clusters of about 30 layers. Below<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>, the scattering intensity decreases as the number of layers in a cluster decreases. To account for this surprising nonlinear behavior that correlates with nonlinear features of the networks’ macroscopic spontaneous shape change and birefringence, a model is proposed where dislocations form in the layers at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>. Below<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>, more dislocations form to break down the layer structure. The possibility of dislocation formation at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>independent of mesogenic concentrations is attributed to a conformational change in the crosslinker which is present at the same concentration in the three LSCEs.</jats:p>

Topics
  • impedance spectroscopy
  • cluster
  • single crystal
  • phase
  • glass
  • glass
  • phase transition
  • dislocation
  • glass transition temperature
  • X-ray scattering
  • elastomer
  • liquid crystal
  • liquid-solid chromatography