Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stölting, Oliver

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Preparation of Textured Polycrystalline La<sub>2</sub>NiO<sub>4+</sub> <sub>δ</sub> Membranes and Their Oxygen-Transporting Propertiescitations

Places of action

Chart of shared publication
Feldhoff, Armin
1 / 21 shared
Cano, Giamper Escobar
1 / 1 shared
Breidenstein, Bernd
1 / 20 shared
Riebesehl, Fabian
1 / 1 shared
Zhao, Zhijun
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Feldhoff, Armin
  • Cano, Giamper Escobar
  • Breidenstein, Bernd
  • Riebesehl, Fabian
  • Zhao, Zhijun
OrganizationsLocationPeople

article

Preparation of Textured Polycrystalline La<sub>2</sub>NiO<sub>4+</sub> <sub>δ</sub> Membranes and Their Oxygen-Transporting Properties

  • Feldhoff, Armin
  • Cano, Giamper Escobar
  • Breidenstein, Bernd
  • Riebesehl, Fabian
  • Zhao, Zhijun
  • Stölting, Oliver
Abstract

<jats:p>Due to its high chemical and thermal stability in CO<jats:sub>2</jats:sub> atmosphere and its anisotropic crystal structure, the Ruddlesden-Popper phase La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>has attracted considerable attention in the research field of oxygen-transporting membranes. The anisotropic properties of La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>can be exploited in textured polycrystalline membranes to control the oxygen diffusion through this material. To fabricate textured La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub> membranes, powder mixtures consisting of fine-grained equiaxial La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>matrix particles and large plate-like La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>template particles in different mass ratios were uniaxially pressed and then sintered in air. For this purpose, the anisotropic template particles were synthesized by molten-flux method using NaOH as flux [1]. In the powder mixture, the La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>template particles can be aligned perpendicular or parallel to the pressing direction, depending on the geometry of the pressing tool and the sample preparation. After the sintering process, textured La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>membranes were obtained,<jats:sub> </jats:sub>which was verified by measuring X-ray diffraction patterns and pole figures. Further X-ray diffraction measurements together with the calculation of the Lotgering orientation factor revealed that an increasing content of the template particles in the ceramic materials leads to a stronger texturing. Scanning electron microscopy micrographs show some individual plate-like<jats:italic><jats:sub> </jats:sub></jats:italic>La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>grains well embedded in the matrix. Homogeneous distribution of lanthanum, nickel and oxygen in the ceramics was confirmed by energy-dispersive X-ray spectroscopy. Finally, the influence of the template particle content in the La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub> membranes on the oxygen permeation performance is discussed.</jats:p><jats:p> [1] Escobar Cano, G.; Brinkmann, Y.; Zhao, Z.; Kißling, P.A.; Feldhoff, A. Sol–Gel-Process-Based Molten-Flux Synthesis of Plate-like La<jats:sub>2</jats:sub>NiO<jats:sub>4+</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic> Particles. <jats:italic>Crystals</jats:italic><jats:bold>2022</jats:bold>, <jats:italic>12</jats:italic>, 1346. https://doi.org/10.3390/cryst12101346</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • nickel
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • anisotropic
  • Lanthanum
  • Energy-dispersive X-ray spectroscopy
  • ceramic
  • sintering
  • aligned