Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aurangzeb, Junejo

  • Google
  • 1
  • 6
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Platinum on Oxidized Graphene Sheets: A Bifunctional Electrocatalyst for Hydrogen Oxidation Reaction and Methanol Oxidation Reaction1citations

Places of action

Chart of shared publication
Inam, Muhammad Ali
1 / 2 shared
Khan, Rizwan
1 / 6 shared
Abbasi, Irfan Ahmed
1 / 1 shared
Larik, Rimsha
1 / 2 shared
Parkash, Dr. Anand
1 / 2 shared
Kumar, Raj
1 / 13 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Inam, Muhammad Ali
  • Khan, Rizwan
  • Abbasi, Irfan Ahmed
  • Larik, Rimsha
  • Parkash, Dr. Anand
  • Kumar, Raj
OrganizationsLocationPeople

article

Platinum on Oxidized Graphene Sheets: A Bifunctional Electrocatalyst for Hydrogen Oxidation Reaction and Methanol Oxidation Reaction

  • Inam, Muhammad Ali
  • Aurangzeb, Junejo
  • Khan, Rizwan
  • Abbasi, Irfan Ahmed
  • Larik, Rimsha
  • Parkash, Dr. Anand
  • Kumar, Raj
Abstract

<jats:p>Pt/Graphene has been prepared by polyol method using pre-functionalized graphene and Pt salt solution, hexachloroplatinic acid. Electrochemical studies of the Pt supported onto graphene showed improved performance for Hydrogen Oxidation Reaction (HOR) and Methanol Oxidation Reaction (MOR) compared to state-of-the-art Pt/C catalysts. A thermal treatment (Ar/H<jats:sub>2</jats:sub>, 100 °C, 3 h) applied to the catalysts improved the catalytic activity and stability of the Pt/Graphene catalyst showing an electrochemical surface area of 58 m<jats:sup>2</jats:sup>.g<jats:sup>−1</jats:sup> and stability was found 3-fold higher than the Pt/C conventional catalyst. After 4,000 cycles, the cyclic voltammetry measurements showed that the Pt/Graphene catalyst lost only 20% of the Pt initial ECSA, whereas the degradations of Pt /C catalyst were quite high, showing 65% loss. The Pt/Graphene catalyst also exhibited higher performance in the methanol electrooxidation for the promotion of C–H breaking and CO<jats:sub>ad</jats:sub> tolerance and good stability. Due to the homogenous distribution of Pt particles on the graphene and the availability of these surfaces for hydrogen adsorption and desorption processes, Pt/Graphene was reported to have 2-fold greater electrochemical performance towards methanol oxidation than Pt/C. Additionally, the findings contribute to an improved mass movement in the catalyst layer. According to this research, the oxygenation groups and graphitization have a dual role in catalytic activity.</jats:p>

Topics
  • surface
  • Platinum
  • Hydrogen
  • cyclic voltammetry