Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Amietszajew, Tazdin

  • Google
  • 4
  • 5
  • 94

Coventry University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids78citations
  • 2016Metal recovery by electrodeposition from a molten salt two-phase cell system8citations
  • 2016Valuable metals recovery by molten salts electrolysis.citations
  • 2015The Solubility of Specific Metal Oxides in Molten Borate Glass8citations

Places of action

Chart of shared publication
Grząbka-Zasadzińska, Aleksandra
1 / 1 shared
Borysiak, Sławomir
1 / 2 shared
Bhagat, Rohit
2 / 14 shared
Sridhar, Seetharaman
1 / 23 shared
Seetharaman, Sridhar
1 / 5 shared
Chart of publication period
2017
2016
2015

Co-Authors (by relevance)

  • Grząbka-Zasadzińska, Aleksandra
  • Borysiak, Sławomir
  • Bhagat, Rohit
  • Sridhar, Seetharaman
  • Seetharaman, Sridhar
OrganizationsLocationPeople

article

Metal recovery by electrodeposition from a molten salt two-phase cell system

  • Bhagat, Rohit
  • Sridhar, Seetharaman
  • Amietszajew, Tazdin
Abstract

<p>A novel electrochemical recovery method of Co, Cu, Mn and Ni from a reactor based on two immiscible molten phases, to enable selective metal plating, sufficient feedstock dissolution and protection from re-oxidation, was designed and characterized through voltammetry and chronoamperometry. The immiscible phases in the electrolytic cell were NaCl and Na<sub>2</sub>O-2B<sub>2</sub>O<sub>3</sub> at 1173 K, and the metal feedstock to be recovered was either metal chlorides or metal oxides of Co, Cu, Mn and Ni. Metals could be successfully recovered as plated metal deposits and the formal redox reaction potentials were reported. Metals thermodynamic behavior differences between the cells were analyzed. Analysis of the metal deposits showed that the recovered metals were of high purity (∼99%). This offers an alternative method to recycle valuable metals present in the growing e-waste stream.</p>

Topics
  • phase
  • electrodeposition
  • chronoamperometry
  • voltammetry