People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Christensen, Erik
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Pressurized solid phosphate electrolyzer for medium temperature water splittingcitations
- 2020CsH 2 PO 4 as Electrolyte for the Formation of CH 4 by Electrochemical Reduction of CO 2citations
- 2020CsH2PO4 as Electrolyte for the Formation of CH4 by Electrochemical Reduction of CO2citations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2015The effect of preparation method on the proton conductivity of indium doped tin pyrophosphatescitations
- 2014The Chemical Vapour Deposition of Tantalum - in long narrow channels
- 2014Intermediate Temperature Steam Electrolysis with Phosphate-Based Electrolytes
- 2014Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells
- 2013Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperaturescitations
- 2012WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolyserscitations
- 2012Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperaturescitations
- 2011Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarizationcitations
- 2011Corrosion behaviour of construction materials for high temperature steam electrolyserscitations
- 2011Corrosion behaviour of construction materials for high temperature steam electrolyserscitations
- 2011New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures
- 2010Strategic surface topographies for enhanced lubrication in sheet forming of stainless steelcitations
- 2004Development of strategic surface topographies for lubrication in sheet forming of stainless steel
- 2000On the chemical nature of boundary lubrication of stainless steel by chlorine - and sulfur-containing EP-additivescitations
- 2000Cold Forging of Stainless Steel with FeCl3 based lubricants
Places of action
Organizations | Location | People |
---|
article
Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations
Abstract
Membranes based on poly(2,2'-(<i>m</i>-phenylene)-5,5-bibenzimidazole) (<i>m</i>-PBI) can dissolve large amounts of aqueous KOH to give electrolyte systems with ion conductivity in a practically useful range. The conductivity of the membrane strongly depends on the concentration of the aqueous KOH phase, reaching about 10<sup>-1</sup> S cm<sup>-1</sup> or higher in 15-25 wt% KOH. Herein, <i>m</i>-PBI membranes are systematically characterized with respect to performance and short-term stability as electrolyte in a zero-gap alkaline water electrolyzer at different KOH concentrations. Using plain uncatalyzed nickel foam electrodes, the cell based on m-PBI outperforms the cell based on the commercially available state-of-the-art diaphragm and reaches a current density of 1500 mA cm<sup>-2</sup> at 2.4 V in 20 wt% KOH at 80°C. The cell performance remained stable during two days of operation, though post analysis of the membrane using size exclusion chromatography and spectroscopy reveal evidence of oxidative degradation of the base polymer at KOH concentrations of 15 wt% and higher.