People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frankberg, Erkka
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Enabling fast debinding of ceramic vat photopolymerization prints with supercritical carbon dioxide as a solventcitations
- 2024Vat photopolymerization of biomimetic bone scaffolds based on Mg, Sr, Zn-substituted hydroxyapatitecitations
- 2023Evolution of alumina phase structure in thermal plasma processingcitations
- 2023Evolution of alumina phase structure in thermal plasma processingcitations
- 2022Young Ceramists in the Spotlight
- 2020Investigation of corrosion and high temperature oxidation of promising ATF cladding materials in the framework of the Il trovatore project
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Three-dimensional printing of zirconia: characterization of early stage material propertiescitations
- 2019Three-dimensional printing of zirconia: characterization of early stage material propertiescitations
Places of action
Organizations | Location | People |
---|
article
Highly ductile amorphous oxide at room temperature and high strain rate
Abstract
<p>Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.</p>