Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Truscott, Andrew

  • Google
  • 6
  • 50
  • 290

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system88citations
  • 2021Ultrathin Ga2O3 Glass72citations
  • 2021Influence of direct deposition of dielectric materials on the optical response of monolayer WS213citations
  • 2019Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation82citations
  • 2016Talbot Effect for Exciton Polaritons35citations
  • 2016Talbot effect for exciton-polaritonscitations

Places of action

Chart of shared publication
Wurdack, Matthias
3 / 3 shared
Su, Rui
1 / 1 shared
Biegańska, Dąbrówka
1 / 1 shared
Liew, Timothy C. H.
1 / 1 shared
Huang, Yuqing
1 / 5 shared
Xiong, Qihua
1 / 1 shared
Pieczarka, Maciej
3 / 3 shared
Haas, Benedikt
1 / 5 shared
Lockrey, Mark N.
1 / 3 shared
Syed, Nitu
1 / 5 shared
Fuhrer, Michael S.
2 / 4 shared
Chen, Shao Yu
1 / 1 shared
Bhattacharyya, Semonti
2 / 2 shared
Bao, Qiaoliang
1 / 6 shared
Yun, Tinghe
2 / 2 shared
Müller, Johannes
1 / 5 shared
Lu, Yuerui
1 / 1 shared
Schneider, Christian
1 / 19 shared
Zavabeti, Ali
1 / 7 shared
Daeneke, Torben
2 / 14 shared
Ou, Qingdong
1 / 2 shared
Notthoff, Christian
1 / 5 shared
Nguyen, Chung Kim
1 / 4 shared
Pfeiffer, L. N.
1 / 1 shared
Liew, T. C. H.
1 / 4 shared
Fraser, M. D.
1 / 1 shared
Comber-Todd, D.
1 / 1 shared
Parish, M. M.
1 / 2 shared
Bobrovska, N.
1 / 1 shared
Levinsen, J.
1 / 2 shared
West, K.
1 / 6 shared
Gao, T.
2 / 5 shared
Snoke, D. W.
1 / 1 shared
Steger, M.
1 / 3 shared
Matuszewski, M.
1 / 1 shared
Li, G.
1 / 31 shared
Winkler, K.
1 / 8 shared
Egorov, O. A.
1 / 4 shared
Schneider, C.
1 / 15 shared
Ma, X.
1 / 15 shared
Höfling, S.
1 / 4 shared
Kamp, M.
1 / 14 shared
Hãfling, S.
1 / 1 shared
Kamp, Martin
1 / 3 shared
Gao, Tingge
1 / 1 shared
Egorov, Oleg A.
1 / 1 shared
Li, Guangyao
1 / 1 shared
Winkler, Konrad
1 / 1 shared
Ma, Xuekai
1 / 1 shared
Schneider, Christian M.
1 / 1 shared
Chart of publication period
2021
2019
2016

Co-Authors (by relevance)

  • Wurdack, Matthias
  • Su, Rui
  • Biegańska, Dąbrówka
  • Liew, Timothy C. H.
  • Huang, Yuqing
  • Xiong, Qihua
  • Pieczarka, Maciej
  • Haas, Benedikt
  • Lockrey, Mark N.
  • Syed, Nitu
  • Fuhrer, Michael S.
  • Chen, Shao Yu
  • Bhattacharyya, Semonti
  • Bao, Qiaoliang
  • Yun, Tinghe
  • Müller, Johannes
  • Lu, Yuerui
  • Schneider, Christian
  • Zavabeti, Ali
  • Daeneke, Torben
  • Ou, Qingdong
  • Notthoff, Christian
  • Nguyen, Chung Kim
  • Pfeiffer, L. N.
  • Liew, T. C. H.
  • Fraser, M. D.
  • Comber-Todd, D.
  • Parish, M. M.
  • Bobrovska, N.
  • Levinsen, J.
  • West, K.
  • Gao, T.
  • Snoke, D. W.
  • Steger, M.
  • Matuszewski, M.
  • Li, G.
  • Winkler, K.
  • Egorov, O. A.
  • Schneider, C.
  • Ma, X.
  • Höfling, S.
  • Kamp, M.
  • Hãfling, S.
  • Kamp, Martin
  • Gao, Tingge
  • Egorov, Oleg A.
  • Li, Guangyao
  • Winkler, Konrad
  • Ma, Xuekai
  • Schneider, Christian M.
OrganizationsLocationPeople

article

Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system

  • Truscott, Andrew
  • Wurdack, Matthias
  • Su, Rui
  • Biegańska, Dąbrówka
  • Liew, Timothy C. H.
  • Huang, Yuqing
  • Xiong, Qihua
  • Pieczarka, Maciej
Abstract

<p>Topology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. Different topological phases of matter are characterized by topological invariants. In energy-conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum space. In non-Hermitian systems, a topological invariant is predicted to emerge from the winding of the complex eigenenergies. Here, we directly measure the non-Hermitian topological invariant arising from exceptional points in the momentum-resolved spectrum of exciton polaritons. These are hybrid light-matter quasiparticles formed by photons strongly coupled to electron-hole pairs (excitons) in a halide perovskite semiconductor at room temperature. We experimentally map out both the real (energy) and imaginary (linewidth) parts of the spectrum near the exceptional points and extract the novel topological invariant—fractional spectral winding. Our work represents an essential step toward realization of non-Hermitian topological phases in a condensed matter system.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • semiconductor