Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fiborek, Piotr

  • Google
  • 4
  • 8
  • 53

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Ultrasonic Guided Wave Signal Based Nondestructive Testing of a Bonded Composite Structure Using Piezoelectric Transducers14citations
  • 2019Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditions36citations
  • 2019Ultrasonic guided wave propagation in a repaired stiffened composite panel1citations
  • 2018Study of disbond effects in a jointed composite structure under variable ambient temperatures2citations

Places of action

Chart of shared publication
Balasubramaniam, Kaleeswaran
1 / 3 shared
Sikdar, Shirsendu
4 / 29 shared
Malinowski, Pawel H.
1 / 2 shared
Banerjee, Sauvik
1 / 11 shared
Kudela, Pawel
2 / 4 shared
Ostachowicz, Wiesław
2 / 17 shared
Malinowski, Paweł
1 / 10 shared
Ostachowicz, Wieslaw
1 / 5 shared
Chart of publication period
2021
2019
2018

Co-Authors (by relevance)

  • Balasubramaniam, Kaleeswaran
  • Sikdar, Shirsendu
  • Malinowski, Pawel H.
  • Banerjee, Sauvik
  • Kudela, Pawel
  • Ostachowicz, Wiesław
  • Malinowski, Paweł
  • Ostachowicz, Wieslaw
OrganizationsLocationPeople

document

Ultrasonic guided wave propagation in a repaired stiffened composite panel

  • Malinowski, Paweł
  • Sikdar, Shirsendu
  • Ostachowicz, Wiesław
  • Fiborek, Piotr
Abstract

<p>Stiffened carbon-fibre-reinforced composite structures are extensively used in the aerospace industry for constructing aircraft wings, fuselage, and several other structural components. These structures are often prone to damage due to ageing, cyclic loading and impact. The wave propagation based structural health monitoring technique is widely used for identifying such damage in these structures. This paper presents the analysis of guided wave propagation in a repaired stiffened composite aircraft-wing panel, in order to understand the wave propagation phenomenon in such complex multi-layered structure. Towards this, a coordinated theoretical, numerical and experimental investigation has been carried out. The dispersion curves for the structure are theoretically obtained by using a fast and efficient semi-analytical model to study the dispersion characteristics of the propagating guided waves at the high-frequency range. An extensive finite element based numerical simulation of guided wave propagation in the sample structure is carried out in ABAQUS. Based on the theoretically obtained dispersion curves, different wave modes in the signals are effectively identified. It is observed that the presence of a localized patch repair region in the structure significantly influences the wave mode amplitudes and propagation velocities. Laboratory experiments are then conducted, in order to verify the numerical simulation results. A good agreement is noticed between the simulation and experimental results, in all the cases studied. A series of parametric study is also numerically carried out, in order to check the influence of repaired region size on the propagating guided wave modes in the structure.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • Carbon
  • experiment
  • simulation
  • layered
  • composite
  • ultrasonic
  • aging