People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bunea, Ada-Ioana
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 20223D printed microrobots controlled by light – Towards environmental and biomedical applications
- 2021Micro 3D Printing by Two-Photon Polymerization: Configurations and Parameters for the Nanoscribe Systemcitations
- 2021Bioinspired microstructured polymer surfaces with antireflective propertiescitations
- 2021Additive manufacturing of polymeric scaffolds for biomimetic cell membrane engineeringcitations
- 2019Optimization of 3D-printed microstructures for investigating the properties of the mucus biobarriercitations
- 2018Light Robotics for Nanomedicine
- 2018Light Robotics – a growing toolbox for biomedical research
- 2018Optically fabricated and controlled microtool as a mobile heat source in microfluidics
Places of action
Organizations | Location | People |
---|
document
Optically fabricated and controlled microtool as a mobile heat source in microfluidics
Abstract
Microfluidic systems have gained much interest in the past decade as they tremendously reduce sample volume requirements for investigating different phenomena and for various medical, pharmaceutical and defense applications. Rapid heat transfer and efficient diffusive material transport are among the benefits of miniaturization. These have been achieved so far by tediously designing and fabricating application-specific microfluidic chambers or by employing microdevices that can be difficult to integrate in microfluidic systems. In this work, we present the fabrication and functionalization via two-photon polymerization and physical vapor deposition of microstructures that serve as heat sources in microfluidic devices upon laser illumination. In contrast to other existing methods that rely on photo-thermal effects, our microtools are amenable to optical manipulation and can be actuated in specific locations where heat generation is desired. Heating effects manifest in the presence of a temperature gradient, induced fluid flow and the formation of microbubbles.