Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dao, Thang Duy

  • Google
  • 1
  • 12
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Improvement of smooth surface of RuO2 bottom electrode on Al2O3 buffer layer and characteristics of RuO2/TiO2/Al2O3/TiO2/RuO2 capacitors8citations

Places of action

Chart of shared publication
Ohishi, Tomoji
1 / 1 shared
Ohi, Akihiko
1 / 3 shared
Nagao, Tadaaki
1 / 1 shared
Onaya, Takashi
1 / 4 shared
Takahashi, Makoto
1 / 2 shared
Kohama, Kazuyuki
1 / 1 shared
Ogura, Atsushi
1 / 2 shared
Yamamoto, Ippei
1 / 1 shared
Nabatame, Toshihide
1 / 2 shared
Sawada, Tomomi
1 / 2 shared
Kurishima, Kazunori
1 / 2 shared
Ito, Kazuhiro
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Ohishi, Tomoji
  • Ohi, Akihiko
  • Nagao, Tadaaki
  • Onaya, Takashi
  • Takahashi, Makoto
  • Kohama, Kazuyuki
  • Ogura, Atsushi
  • Yamamoto, Ippei
  • Nabatame, Toshihide
  • Sawada, Tomomi
  • Kurishima, Kazunori
  • Ito, Kazuhiro
OrganizationsLocationPeople

article

Improvement of smooth surface of RuO2 bottom electrode on Al2O3 buffer layer and characteristics of RuO2/TiO2/Al2O3/TiO2/RuO2 capacitors

  • Ohishi, Tomoji
  • Ohi, Akihiko
  • Nagao, Tadaaki
  • Onaya, Takashi
  • Takahashi, Makoto
  • Kohama, Kazuyuki
  • Dao, Thang Duy
  • Ogura, Atsushi
  • Yamamoto, Ippei
  • Nabatame, Toshihide
  • Sawada, Tomomi
  • Kurishima, Kazunori
  • Ito, Kazuhiro
Abstract

<jats:p>Ruthenium oxide (RuO2) thin films, which are deposited by plasma-enhanced atomic layer deposition (PE-ALD) with a Ru(EtCp)2 precursor and oxygen plasma, exhibit a smoother surface [root mean square (RMS) roughness &amp;lt;1 nm] on ionic Al2O3 and TiO2 buffer layers than on a covalent SiO2 buffer layer (RMS roughness of RuO2: 2.5 nm). The Al2O3 and TiO2 buffer layers which have some charges enable us to prolong the duration time of the Ru(EtCp)2 precursor on the buffer layer and cause the nucleation of RuO2 to occur uniformly. The RuO2 film deposited on the Al2O3 buffer layer by PE-ALD (hereafter “PE-ALD-RuO2”) was used as the bottom electrode for a metal-insulator-metal with a TiO2/Al2O3/TiO2 (TAT) insulator. RuO2/TAT/RuO2 capacitors on the Al2O3 and TiO2 buffer layers had a low enough leakage current density (J) (on the order of ∼10−8 A/cm2), unlike RuO2/TAT/RuO2 capacitors on the SiO2 buffer layer and TiN/TAT/TiN capacitors. These results suggest that the different J properties must be related to the surface roughness of the bottom electrode rather than the work function of RuO2 and TiN. Furthermore, the overall dielectric constant of TAT in RuO2/TAT/RuO2 capacitors reasonably ranged from 50 to 30 as the Al2O3 interlayer thickness increased from 0 to 5 nm. During conductive-atomic force microscopy measurements, the TAT/TiN stack structure exhibited several leakage points, while no such leakage points were observed in the case of TAT/RuO2 on the Al2O3 buffer layer. Thus, PE-ALD-RuO2 on the Al2O3 buffer layer is a candidate bottom electrode material for future dynamic random access memory.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • thin film
  • Oxygen
  • atomic force microscopy
  • dielectric constant
  • random
  • current density
  • tin
  • atomic layer deposition
  • Ruthenium