Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gerasimidis, Simos

  • Google
  • 3
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks1citations
  • 2024Mechanical response and failure modes of three-dimensional auxetic re-entrant LPBF-manufactured steel truss lattice materials2citations
  • 2024Failure mode and load prediction of steel bridge girders through 3D laser scanning and machine learning methods1citations

Places of action

Chart of shared publication
Provost, Aidan
2 / 2 shared
Ai, Chengbo
2 / 2 shared
Tzortzinis, Georgios
2 / 5 shared
Wittig, Jan
2 / 4 shared
Filippatos, Angelos
2 / 36 shared
Gude, Mike
2 / 775 shared
Gross, Andrew J.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Provost, Aidan
  • Ai, Chengbo
  • Tzortzinis, Georgios
  • Wittig, Jan
  • Filippatos, Angelos
  • Gude, Mike
  • Gross, Andrew J.
OrganizationsLocationPeople

article

Mechanical response and failure modes of three-dimensional auxetic re-entrant LPBF-manufactured steel truss lattice materials

  • Gross, Andrew J.
  • Gerasimidis, Simos
Abstract

<jats:title>Abstract</jats:title><jats:p>Auxetic architected materials present a novel class of damage-tolerant materials with tunable mechanical characteristics and high energy absorption due to their unique ability to laterally contract and densify when subjected to axial compressive loading. The current state of research on negative Poisson's ratio materials mainly focuses on 2D geometries and a few families of 3D geometries with limited experimental comparisons between different architectures and various geometrical features. Furthermore, when manufactured via laser powder bed fusion, the influence of as-built deviations of geometrical and material properties inherently present due to the melt pool solidification process for thin features is relatively unexplored in the case of metal architected materials. The authors aim to study the elastic properties, peak characteristics, and failure modes of steel auxetic truss lattices subjected to axial compression while also addressing the uncertainties inherent to the metal laser powder bed fusion additive manufacturing of architected materials. This work presents an experimental and computational exploration and comparison of two promising three-dimensional auxetic truss lattice families of low relative densities. A comprehensive investigation of metal negative Poisson's ratio mechanical metamaterials is presented, including the selection of the architectures, modeling, laser powder bed fusion additive manufacturing, as-built part characterization, material testing, and mechanical testing under axial compression. The study of such architectures can unlock their potential in making them readily adaptable to a wide variety of engineering applications.</jats:p>

Topics
  • impedance spectroscopy
  • melt
  • steel
  • selective laser melting
  • metamaterial
  • solidification
  • Poisson's ratio