People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raman, Ravi Shankar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Analysing Indirect Methods for Comparatively Determining the Compressive Strength of Materials with Various Propertiescitations
- 2023Optimization of friction stir processing parameters for improving structural and mechanical properties in in situ AA5083-H111/Al–Fe compositescitations
- 2023Comparison of tribological characteristics of LM13/B4C and LM13/ilmenite composites at high temperature conditionscitations
Places of action
Organizations | Location | People |
---|
article
Comparison of tribological characteristics of LM13/B4C and LM13/ilmenite composites at high temperature conditions
Abstract
<jats:title>Abstract</jats:title><jats:p>In this work, high temperature tribological characteristics of ilmenite reinforced LM13 aluminium alloy based composites (AMCs) and boron carbide reinforced AMCs are compared. Stir-cast composites were processed using boron carbide (CDP) and ilmenite (NDP) particles separately as reinforcements. Particle size range was 106–125 μm and reinforcement levels were 5, 10, and 15 wt.% for both types of composites. Both composites exhibited uniform distribution of reinforced particles and grain refinement. Compared to the LM13 base alloy, NDP composite containing 15 wt.% reinforcement showed significant improvement in hardness (57%), coefficient of friction (57%), mild-to-severe wear transition temperature, average steady-state wear rate (49%), and coefficient of thermal expansion (55%). CDP-15 composite showed slightly better properties than NDP-15 composite. Microstructure refinement, increased dimensional stability, formation of oxide layer, and formation of tribo-layer due to reinforcement of the ceramic fillers were the main reasons for improvement in properties of processed AMCs. SEM-EDS of wear tracks-debris showed abrasive/delamination wear as the main mechanisms for materials loss. The research showed that the low-cost ilmenite particles can substitute for the very costly boron carbide particles as reinforcements in AMCs used for dry sliding wear applications under high operating temperatures-applied load conditions of the order of 300°C-49 N.</jats:p>