People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Venkatachalam, Vinothini
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Processing and performance of ultra high temperature ceramic matrix composite (UHTCMCs) using radio frequency assisted chemical vapour infiltration (RF-CVI)citations
- 2024Radio frequency-assisted zirconium carbide matrix deposition for continuous fiber-reinforced ultra high temperature ceramic matrix compositescitations
- 2023Elevated temperature tensile and bending strength of ultra-high temperature ceramic matrix composites obtained by different processescitations
- 2023Oxidation studies of SiC-coated 2.5D carbon fibre preformscitations
- 2022Thermal Qualification of the UHTCMCs Produced Using RF-CVI Technique with VMK Facility at DLRcitations
- 2022Ablation behaviour of Cf–ZrC-SiC with and without rare earth metal oxide dopantscitations
- 2021Retained strength of UHTCMCs after oxidation at 2278 Kcitations
- 2020Comparison of MnCo2O4 coated Crofer 22 H, 441, 430 as interconnects for intermediate-temperature solid oxide fuel cell stackscitations
- 2020Comparison of MnCo 2 O 4 coated Crofer 22 H, 441, 430 as interconnects for intermediate-temperature solid oxide fuel cell stackscitations
- 2020Synthesis of nanocrystalline barium titanatecitations
- 2019Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a reviewcitations
- 2019Merging toughness and oxidation resistance in a light ZrB2 compositecitations
- 2014OPTIMIZATION OF FERRITIC STEEL POROUS SUPPORTS FORPROTONIC FUEL CELLS WORKING AT 600°C
- 2014INFLUENCE OF MN-CO SPINEL COATING ON OXIDATION BEHAVIOUR OF FERRITIC SS ALLOYS FOR SOFC INTERCONNECTAPPLICATIONS
- 2014Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications
- 2014Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications
- 2014Optimization of Ferritic Steel Porous Supports for Protonic Fuel Cells Working at 600°C
- 2011Microwave assisted synthesis of barium zirconium titanate nanopowderscitations
- 2009Microwave Assisted Processing of Nano-crystalline Barium Titanate
- 2007Synthesis, Sintering and Machinability of Ti3SiC2 ceramics.
- 2004Synthesis and Characterization of Barium Titanate Nano-powders using Polymeric Precursor Method
- 2004Optimizations of Barium Titanate Nano-powders slip for Tape Casting
Places of action
Organizations | Location | People |
---|
article
Radio frequency-assisted zirconium carbide matrix deposition for continuous fiber-reinforced ultra high temperature ceramic matrix composites
Abstract
<p>Zirconium carbide (ZrC) is considered to be a potential candidate for ultra high temperature applications due to its high melting point, good chemical inertness, and ablation resistance, but the monolithic form suffers from low fracture toughness and hence poor thermal shock resistance. Reinforcing it using continuous carbon fibers (C<sub>f</sub>) to create an ultra high temperature ceramic matrix composite is an obvious solution, however densifying ZrC requires the use of very high temperatures combined with significant pressure, such as obtained by using hot pressing or spark plasma sintering, which risks damaging fibers. In the present work, radio frequency-assisted chemical vapor infiltration (RF-CVI) has been investigated with a view to forming C<sub>f</sub>/ZrC composites. These initial experiments revealed the ability to deposit pure, nano-grained, and near stoichiometric ZrC with deposition occurring preferentially from the center of the sample due to the nature of the inverse temperature profile developed. The deposited ZrC grains were in the range of 4–9 nm in size and had a lattice parameter of 0.4750 nm. The work also showed that the use of RF-CVI enabled the minimization of early pore sealing, a common problem for conventional CVI.</p>