Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scherer, Michael

  • Google
  • 5
  • 30
  • 95

Technical University of Darmstadt

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Blacklight sintering of garnet-based composite cathodescitations
  • 2022Microstructure and conductivity of blacklight‐sintered TiO<sub>2</sub>, YSZ, and Li<sub>0.33</sub>La<sub>0.57</sub>TiO<sub>3</sub>8citations
  • 2022High-temperature plastic deformation of ⟨110⟩-oriented BaTiO 3 single crystals13citations
  • 2022Chiral superconductivity with enhanced quantized Hall responses in moiré transition metal dichalcogenidescitations
  • 2021Precipitation Hardening in Ferroelectric Ceramics74citations

Places of action

Chart of shared publication
Fattakhova-Rohlfing, Dina
1 / 20 shared
Porz, Lukas
3 / 13 shared
Scheld, Walter Sebastian
1 / 7 shared
Rheinheimer, Wolfgang
2 / 19 shared
Uhlenbruck, Sven
1 / 10 shared
Guillon, Olivier
1 / 26 shared
Fulanovic, Lovro
1 / 1 shared
Ebert, Julian N.
1 / 1 shared
Finsterbusch, Martin
1 / 12 shared
Dellen, Christian
1 / 7 shared
Ihrig, Martin
1 / 5 shared
Muhammad, Qaisar Khushi
1 / 1 shared
Frömling, Till
1 / 5 shared
Higuchi, Kimitaka
1 / 1 shared
Koga, Shuhei
1 / 1 shared
Rödel, Jürgen
2 / 20 shared
Gao, Shuang
2 / 3 shared
Höfling, Marion
1 / 7 shared
Isaia, Daniel
1 / 2 shared
Zhuo, Fangping
1 / 3 shared
Classen, Laura
1 / 1 shared
Kennes, Dante Marvin
1 / 1 shared
Yang, Tiannan
1 / 1 shared
Tan, Xiaoli
1 / 8 shared
Zhao, Changhao
1 / 3 shared
Chen, Long Qing
1 / 1 shared
Koruza, Jurij
1 / 50 shared
Meier, Dennis
1 / 14 shared
Kleebe, Hans Joachim
1 / 11 shared
Schultheiß, Jan
1 / 5 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Fattakhova-Rohlfing, Dina
  • Porz, Lukas
  • Scheld, Walter Sebastian
  • Rheinheimer, Wolfgang
  • Uhlenbruck, Sven
  • Guillon, Olivier
  • Fulanovic, Lovro
  • Ebert, Julian N.
  • Finsterbusch, Martin
  • Dellen, Christian
  • Ihrig, Martin
  • Muhammad, Qaisar Khushi
  • Frömling, Till
  • Higuchi, Kimitaka
  • Koga, Shuhei
  • Rödel, Jürgen
  • Gao, Shuang
  • Höfling, Marion
  • Isaia, Daniel
  • Zhuo, Fangping
  • Classen, Laura
  • Kennes, Dante Marvin
  • Yang, Tiannan
  • Tan, Xiaoli
  • Zhao, Changhao
  • Chen, Long Qing
  • Koruza, Jurij
  • Meier, Dennis
  • Kleebe, Hans Joachim
  • Schultheiß, Jan
OrganizationsLocationPeople

article

Microstructure and conductivity of blacklight‐sintered TiO<sub>2</sub>, YSZ, and Li<sub>0.33</sub>La<sub>0.57</sub>TiO<sub>3</sub>

  • Scherer, Michael
  • Porz, Lukas
  • Muhammad, Qaisar Khushi
  • Rheinheimer, Wolfgang
  • Frömling, Till
  • Higuchi, Kimitaka
  • Koga, Shuhei
Abstract

<jats:title>Abstract</jats:title><jats:p>Rapid densification of ceramics has been realized and its merits were demonstrated through multiple approaches out of which UHS and flash sintering attract recent attention. So far, however, scalability remains difficult. A rise in throughput and scalability is enabled by the introduction of blacklight sintering powered by novel light source technology. Intense illumination with photon energy above the bandgap (blacklight) allows high absorption efficiency and, hence, very rapid, contactless heating for all ceramics. While heating the ceramic directly with light without any furnace promises scalability, it simultaneously offers highly accurate process control. For the technology transfer to industry, attainable material quality needs to be assured. Here, we demonstrate the excellent microstructure quality of blacklight‐sintered ceramics observed with ultrahigh voltage electron microscopy revealing an option to tune nanoporosity. Moreover, we confirm that electronic, electron, oxygen, and lithium‐ion conductivities are equal to conventionally sintered ceramics. This gives the prospect of transmitting the merits of rapid densification to the scale of industrial kilns.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • Oxygen
  • Lithium
  • electron microscopy
  • ceramic
  • sintering
  • densification