People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Syed, Abdul Khadar
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Defect tolerance and fatigue limit prediction for laser powder bed fusion Ti6Al4Vcitations
- 2023Fatigue crack growth behavior in an aluminum alloy Al–Mg–0.3Sc produced by wire based directed energy deposition processcitations
- 2023Strain controlled fatigue behaviour of a wire + arc additive manufactured Ti-6Al-4Vcitations
- 2022Cyclic plasticity and damage mechanisms of Ti-6Al-4V processed by electron beam meltingcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire+ arc additive manufactured titanium alloy Ti-6Al-4Vcitations
- 2021Influence of deposition strategies on tensile and fatigue properties in a wire + arc additive manufactured Ti-6Al-4Vcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire + arc additive manufactured titanium alloy Ti–6Al–4Vcitations
- 2020High cycle fatigue and fatigue crack growth rate in additive manufactured titanium alloyscitations
- 2020The role of microstructure and local crystallographic orientation near porosity defects on the high cycle fatigue life of an additive manufactured Ti-6Al-4Vcitations
- 2019Microstructure and mechanical properties of as-built and heat-treated electron beam melted Ti–6Al–4Vcitations
- 2019A critical evaluation of the microstructural gradient along the build direction in electron beam melted Ti-6Al-4V alloycitations
- 2019Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloycitations
- 2019High cycle fatigue and fatigue crack growth rate in additive manufactured titanium alloyscitations
- 2019Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloycitations
- 2019Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire + arc additive manufactured Ti-6Al-4Vcitations
- 2019An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4Vcitations
- 2018A comparison of fatigue crack growth performance of two aerospace grade aluminium alloys reinforced with bonded crack retarderscitations
- 2018Experimental and numerical analysis of flexural and impact behaviour of glass/pp sandwich panel for automotive structural applicationscitations
- 2018Mapping residual strain induced by cold working and by laser shock peening using neutron transmission spectroscopycitations
- 2017Fatigue performance of bonded crack retarders in the presence of cold worked holes and interference-fit fasteners
- 2017Fatigue performance of bonded crack retarders in the presence of cold worked holes and interference-fit fastenerscitations
- 2014Durability of bonded crack retarders for aerospace
Places of action
Organizations | Location | People |
---|
article
Fatigue crack growth behavior in an aluminum alloy Al–Mg–0.3Sc produced by wire based directed energy deposition process
Abstract
Additive manufacturing (AM) of Al–Mg–Sc alloys has received considerable interest from the aerospace industry owing to their high specific strength and suitability for AM processes. This study has investigated the fatigue crack growth behavior in an Al–Mg–0.3Sc alloy made by wire and arc additive manufacturing. Tests were conducted with two different crack orientations at cyclic load ratios of 0.1 and 0.5. At the lower load ratio, the horizontal crack showed a faster growth rate owing to the smaller grains and coarser second-phase particles that the crack tip had encountered when it propagated along the material build direction. The anisotropy in crack growth rate was mainly caused by the grain size effect. When the applied stress intensity factor range exceeded the value of 10 MPa m1/2, an isotropic crack growth rate between the two crack orientations was measured. This is due to the microstructural influence being overcome by the governing parameter of fracture mechanics. At the higher load ratio of 0.5, crack growth rate is isotropic, and the threshold stress intensity factor range was much lower than that tested under load ratio 0.1. Finally, the modified Hartman–Schijve equation has been successfully employed to represent the crack growth rates in all three regions.