People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jokinen, Ville P.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Microfabrication atomic layer deposited Pt NPs/TiN thin film on silicon as a nanostructure signal Transducer: Electrochemical characterization toward neurotransmitter sensingcitations
- 2021Fabrication of elastic, conductive, wear-resistant superhydrophobic composite materialcitations
- 2020Biofouling affects the redox kinetics of outer and inner sphere probes on carbon surfaces drastically differently - implications to biosensingcitations
- 2019Formation of nanospikes on AISI 420 martensitic stainless steel under gallium ion bombardment
- 2019Chemical analysis using 3D printed glass microfluidicscitations
- 2019Fabrication of micro- and nanopillars from pyrolytic carbon and tetrahedral amorphous carboncitations
- 2019Side-by-side 2D and 3D cell culturing microdevices for drug toxicity screening
- 2017Non-stick properties of thin-film coatings on dental-restorative instrumentscitations
- 2016Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etchingcitations
- 2016Novel nanostructure replication process for robust superhydrophobic surfacescitations
- 2016Robust hybrid elastomer/metal-oxide superhydrophobic surfacescitations
- 2015Advances in metallization of organically modified ceramics
- 2013Laser direct writing of thick hybrid polymer microstructurescitations
Places of action
Organizations | Location | People |
---|
article
Non-stick properties of thin-film coatings on dental-restorative instruments
Abstract
The non-stick properties of thin-film coatings on dental-restorative instruments were investigated by static contact-angle measurement using dental filler resin as well as by scanning electron microscopy of the amount of sticking dental restorative material. Furthermore, using a customized dipping measurement set-up, non-stick properties were evaluated by measuring force-by-time when the instrument was pulled out of restorative material. Minor improvements in non-stick properties were obtained with commercial diamond-like carbon and commercial polytetrafluoroethylene-based coatings. Major improvements were obtained with an in-house fabricated superhydrophobic coating prepared by a multistep process consisting of surface microstructuring by etching in hydrogen fluoride (HF): hydrogen peroxide (H2O2)(1:1; vol/vol), atomic layer deposition of a 7 nm coating of aluminium oxide and titanium oxide, and a self-assembled monolayer of fluorinated organosilicon. Superhydrophobic coatings provide a possible future solution to prevent unwanted adherence of composite restorative material to dental instruments