Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Butt, Hassaan Ahmad

  • Google
  • 4
  • 32
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Multifunctional nanocomposite assessment using carbon nanotube fiber sensorscitations
  • 2024Approaching Technological Limit for Wet‐Pulling Technique3citations
  • 2022Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes.38citations
  • 2021CNT/Epoxy-Masterbatch Based Nanocomposites: Thermal and Electrical Properties14citations

Places of action

Chart of shared publication
Vershinina, Anna I.
1 / 1 shared
Krasnikov, Dmitry V.
2 / 8 shared
Sergeichev, Ivan V.
2 / 3 shared
Wang, Zeyu
1 / 1 shared
Korsunsky, Alexander M.
1 / 32 shared
Shandakov, Sergey D.
2 / 5 shared
Nasibulin, Albert G.
1 / 32 shared
Kondrashov, Vladislav A.
1 / 1 shared
Voloskov, Boris V.
1 / 1 shared
Konev, Stepan D.
1 / 3 shared
Chetyrkina, Margarita R.
1 / 1 shared
Fedorov, Fedor S.
1 / 3 shared
Mikladal, Bjørn
1 / 3 shared
Bulavskiy, Mikhail O.
1 / 1 shared
Zhilyaeva, Maria A.
1 / 1 shared
Gorshunov, Boris P.
1 / 4 shared
Kallio, Tanja
1 / 38 shared
Vorobei, Anton
1 / 1 shared
Krasnikov, Dmitry
1 / 1 shared
Novikov, Ilya V.
1 / 3 shared
Yaroslav, Zuev
1 / 1 shared
Shulga, Eugene V.
1 / 2 shared
Parenago, Olga O.
1 / 2 shared
Gusev, Sergey A.
1 / 2 shared
Zhukov, Sergey S.
1 / 2 shared
Abaimov, Sergey G.
1 / 11 shared
Owais, Mohammad
1 / 2 shared
Lomov, Stepan Vladimirovitch
1 / 27 shared
Ostrizhiniy, D.
1 / 1 shared
Sulimov, A.
1 / 1 shared
Akhatov, Iskander
1 / 5 shared
Popov, Y. A.
1 / 1 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Vershinina, Anna I.
  • Krasnikov, Dmitry V.
  • Sergeichev, Ivan V.
  • Wang, Zeyu
  • Korsunsky, Alexander M.
  • Shandakov, Sergey D.
  • Nasibulin, Albert G.
  • Kondrashov, Vladislav A.
  • Voloskov, Boris V.
  • Konev, Stepan D.
  • Chetyrkina, Margarita R.
  • Fedorov, Fedor S.
  • Mikladal, Bjørn
  • Bulavskiy, Mikhail O.
  • Zhilyaeva, Maria A.
  • Gorshunov, Boris P.
  • Kallio, Tanja
  • Vorobei, Anton
  • Krasnikov, Dmitry
  • Novikov, Ilya V.
  • Yaroslav, Zuev
  • Shulga, Eugene V.
  • Parenago, Olga O.
  • Gusev, Sergey A.
  • Zhukov, Sergey S.
  • Abaimov, Sergey G.
  • Owais, Mohammad
  • Lomov, Stepan Vladimirovitch
  • Ostrizhiniy, D.
  • Sulimov, A.
  • Akhatov, Iskander
  • Popov, Y. A.
OrganizationsLocationPeople

document

CNT/Epoxy-Masterbatch Based Nanocomposites: Thermal and Electrical Properties

  • Abaimov, Sergey G.
  • Owais, Mohammad
  • Lomov, Stepan Vladimirovitch
  • Ostrizhiniy, D.
  • Sulimov, A.
  • Butt, Hassaan Ahmad
  • Akhatov, Iskander
  • Popov, Y. A.
Abstract

In this work, three masterbatches of carbon nanotubes (CNTs) were utilized to manufacture electrically and thermally conductive epoxy nanocomposites at three weight percentages using a scalable, economic processing route. Two masterbatches contained multi-wall carbon nanotubes (MWCNT) of similar aspect ratios while the third contained single-wall carbon nanotubes (SWCNTs) with a higher aspect ratio. Each masterbatch was produced industrially using a different processing technique. It was seen that the functional properties of the produced nanocomposites were directly tied to the particle dispersion and the masterbatch production route. For samples produced with better masterbatch production technology (SWCNTs), the dispersion degree was better compared to samples produced using less effective production techniques (MWCNTs). Electrical and thermal conductivity for SWCNT nanocomposites reached as high as 0.5 S/cm and 0.48 Wm−1 K−1 at 2.0% wt. respectively, whereas MWCNT samples showed values between 1.37×10−5 – 1.5×10−7 S/cm and 0.22 Wm−1 K−1 for electrical and thermal conductivity at the same weight percentage. SWCNT samples outperformed MWCNT samples by 4–6 orders of magnitude in terms of electrical conductivity and 4 times for thermal conductivity.

Topics
  • nanocomposite
  • dispersion
  • Carbon
  • nanotube
  • laser emission spectroscopy
  • thermal conductivity
  • electrical conductivity