Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rajani, Chang

  • Google
  • 1
  • 5
  • 9

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Detecting Industrial Fouling by Monotonicity during Ultrasonic Cleaning9citations

Places of action

Chart of shared publication
Haeggström, Edward
1 / 20 shared
Rauhala, Timo
1 / 4 shared
Klami, Arto
1 / 1 shared
Salmi, Ari
1 / 18 shared
Myllymäki, Petri Jukka
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Haeggström, Edward
  • Rauhala, Timo
  • Klami, Arto
  • Salmi, Ari
  • Myllymäki, Petri Jukka
OrganizationsLocationPeople

document

Detecting Industrial Fouling by Monotonicity during Ultrasonic Cleaning

  • Haeggström, Edward
  • Rauhala, Timo
  • Klami, Arto
  • Salmi, Ari
  • Rajani, Chang
  • Myllymäki, Petri Jukka
Abstract

High power ultrasound permits non-invasive cleaning of industrial equipment, but to make such cleaning systems energy efficient, one needs to recognize when the structure has been sufficiently cleaned without using invasive diagnostic tools. This can be done using ultrasound reflections generated inside the structure. This inverse modeling problem cannot be solved by forward modeling for irregular and complex structures, and it is difficult to tackle also with machine learning since human-annotated labels are hard get. We provide a deep learning solution that relies on the physical properties of the cleaning process. We rely on the fact that the amount of fouling is reduced as we clean more. Using this monotonicity property as indirect supervision we develop a semi-supervised model for detecting when the equipment has been cleaned.

Topics
  • impedance spectroscopy
  • ultrasonic
  • machine learning