People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krushynska, Anastasiia O.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Characterizing Dissipative Elastic Metamaterials Produced by Additive Manufacturingcitations
- 2023Analytical characterization of the dynamic response of viscoelastic metamaterialscitations
- 2022Hybrid machine-learning and finite-element design for flexible metamaterial wingscitations
- 2018Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterialscitations
- 2017Dissipative elastic metamaterials
- 2017Hierarchical bio-inspired dissipative metamaterials for low frequency attenuationcitations
- 2017The attenuation performance of locally resonant acoustic metamaterials based on generalised viscoelastic modellingcitations
- 2017Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterialscitations
- 2016Multiscale mechanics of dynamical metamaterials
- 2016Visco-elastic effects on wave dispersion in three-phase acoustic metamaterialscitations
- 2014Towards optimal design of locally resonant acoustic metamaterialscitations
Places of action
Organizations | Location | People |
---|
document
Hierarchical bio-inspired dissipative metamaterials for low frequency attenuation
Abstract
<p>In this work, we numerically and experimentally investigate the influence of bio-inspired hierarchical organization and material viscoelasticity on the wave dispersion diagram in metamaterials with self-similar structures at various spatial scales. The study reveals that the hierarchical architecture combined with viscoelastic material properties provides advantages for the dynamic performance with respect to conventional metamaterials.</p>