People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bogaerts, Wim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Vertical coupling between waveguides and optical fibers utilizing polarization gratingscitations
- 2022Wafer-level hermetically sealed silicon photonic MEMScitations
- 2022Wafer-level hermetically sealed silicon photonic MEMScitations
- 2021Silicon photonic microelectromechanical phase shifters for scalable programmable photonicscitations
- 2016Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integrationcitations
- 2014Electro-optic organic crystal silicon high-speed modulatorcitations
- 2013Preferentially oriented BaTiO3 thin films deposited on silicon with thin intermediate buffer layerscitations
Places of action
Organizations | Location | People |
---|
article
Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration
Abstract
Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, neither silicon nor metals exhibit appreciable second-order opti-cal nonlinearities, thereby making efficient electro-optic modula-tors challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration, which combine silicon-on-insulator (SOI) waveguides and plasmonic nanostructures with organic electro-optic cladding materials.