Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lemal, S.

  • Google
  • 4
  • 19
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Roles of Defects and Sb-Doping in the Thermoelectric Properties of Full-Heusler Fe2TiSn3citations
  • 2020Artificial quantum confinement in LaAlO 3 /SrTiO 3 heterostructures6citations
  • 2020Artificial quantum confinement in LaAl O3/SrTi O3 heterostructures6citations
  • 2020Artificial quantum confinement in LaAl O3/SrTi O3 heterostructures6citations

Places of action

Chart of shared publication
Ghosez, P.
4 / 7 shared
Ricci, F.
1 / 4 shared
Pani, M.
1 / 7 shared
I., Bilc D.
1 / 1 shared
Marre, D.
1 / 11 shared
Pallecchi, I.
1 / 22 shared
Chikina, A.
3 / 5 shared
Caputo, M.
3 / 7 shared
Triscone, J.-M.
1 / 3 shared
Gariglio, S.
3 / 4 shared
Filippetti, A.
3 / 7 shared
Boselli, M.
3 / 3 shared
Li, D.
2 / 22 shared
Cancellieri, C.
3 / 13 shared
Schmitt, T.
3 / 18 shared
Strocov, V. N.
2 / 9 shared
Triscone, J. M.
1 / 1 shared
-M., Triscone J.
1 / 1 shared
N., Strocov V.
1 / 1 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Ghosez, P.
  • Ricci, F.
  • Pani, M.
  • I., Bilc D.
  • Marre, D.
  • Pallecchi, I.
  • Chikina, A.
  • Caputo, M.
  • Triscone, J.-M.
  • Gariglio, S.
  • Filippetti, A.
  • Boselli, M.
  • Li, D.
  • Cancellieri, C.
  • Schmitt, T.
  • Strocov, V. N.
  • Triscone, J. M.
  • -M., Triscone J.
  • N., Strocov V.
OrganizationsLocationPeople

article

Artificial quantum confinement in LaAl O3/SrTi O3 heterostructures

  • Chikina, A.
  • Ghosez, P.
  • Caputo, M.
  • Gariglio, S.
  • Lemal, S.
  • Filippetti, A.
  • Boselli, M.
  • Cancellieri, C.
  • Schmitt, T.
  • Triscone, J. M.
  • Strocov, V. N.
Abstract

Heterostructures of transition metal oxides perovskites represent an ideal platform to explore exotic phenomena involving the complex interplay between the spin, charge, orbital and lattice degrees of freedom available in these compounds. At the interface between such materials, this interplay can lead to phenomena that are present in none of the original constituents such as the formation of the interfacial two-dimensional electron system (2DES) discovered at the LAO3/STO3 (LAO/STO) interface. In samples prepared by growing a LAO layer onto a STO substrate, the 2DES is confined in a band bending potential well, whose width is set by the interface charge density and the STO dielectric properties, and determines the electronic band structure. Growing LAO (2 nm)/STO (x nm)/LAO (2 nm) heterostructures on STO substrates allows us to control the extension of the confining potential of the top 2DES via the thickness of the STO layer. In such samples, we explore the electronic structure trend under an increase of the confining potential with using soft X-ray angle-resolved photoemission spectroscopy combined with ab initio calculations. The results indicate that varying the thickness of the STO film modifies the quantization of the 3dt2g bands and, interestingly, redistributes the charge between the dxy and dxz/dyz bands.

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • compound
  • two-dimensional
  • interfacial
  • band structure