Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kringhøj, Anders

  • Google
  • 3
  • 13
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Andreev Modes from Phase Winding in a Full-Shell Nanowire-Based Transmon14citations
  • 2021Magnetic-Field-Compatible Superconducting Transmon Qubit26citations
  • 2020Destructive Little-Parks Effect in a Full-Shell Nanowire-Based Transmon32citations

Places of action

Chart of shared publication
Heck, B. Van
1 / 1 shared
Winkler, G. W.
1 / 1 shared
Sabonis, Deividas
2 / 2 shared
Erlandsson, Oscar
3 / 3 shared
Krogstrup, Peter
3 / 17 shared
Petersson, Karl
3 / 3 shared
Casparis, Lucas
1 / 2 shared
Hesselberg, M.
1 / 1 shared
Kroll, J. G.
1 / 1 shared
Mcneil, R. P. G.
1 / 1 shared
Uilhoorn, W.
1 / 2 shared
Petkovic, Ivana
1 / 1 shared
Heck, Bernard Van
1 / 1 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Heck, B. Van
  • Winkler, G. W.
  • Sabonis, Deividas
  • Erlandsson, Oscar
  • Krogstrup, Peter
  • Petersson, Karl
  • Casparis, Lucas
  • Hesselberg, M.
  • Kroll, J. G.
  • Mcneil, R. P. G.
  • Uilhoorn, W.
  • Petkovic, Ivana
  • Heck, Bernard Van
OrganizationsLocationPeople

article

Destructive Little-Parks Effect in a Full-Shell Nanowire-Based Transmon

  • Sabonis, Deividas
  • Kringhøj, Anders
  • Petkovic, Ivana
  • Heck, Bernard Van
  • Erlandsson, Oscar
  • Krogstrup, Peter
  • Petersson, Karl
Abstract

<p>A semiconductor transmon with an epitaxial Al shell fully surrounding an InAs nanowire core is investigated in the low E-J/E-C regime. Little-Parks oscillations as a function of flux along the hybrid wire axis are destructive, creating lobes of reentrant superconductivity separated by a metallic state at a half quantum of applied flux. In the first lobe, phase winding around the shell can induce topological superconductivity in the core. Coherent qubit operation is observed in both the zeroth and first lobes. Splitting of parity bands by coherent single-electron coupling across the junction is not resolved beyond line broadening, placing a bound on Majorana coupling, E-M/h &lt;10 MHz, much smaller than the Josephson coupling E-J/h similar to 4.7 GHz.</p>

Topics
  • impedance spectroscopy
  • phase
  • semiconductor
  • wire
  • superconductivity
  • superconductivity