People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manchon, Aurelien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Unified formulation of interfacial magnonic pumping from noncollinear magnetscitations
- 2018Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
- 2018Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) filmscitations
- 2017Spin-Orbitronics at Transition Metal Interfacescitations
- 2016k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metalscitations
- 2016Spin-torque generation in topological insulator based heterostructurescitations
- 2015Antiferromagnetic spin-orbitronics
- 2015Chiral damping of magnetic domain wallscitations
- 2014Spin-transfer torque generated by a topological insulatorcitations
- 2014Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimescitations
Places of action
Organizations | Location | People |
---|
article
k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals
Abstract
We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.