Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Honigmann, A.

  • Google
  • 2
  • 16
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture60citations
  • 2022Dynamic matrices with DNA-encoded viscoelasticity for advanced cell and organoid culture2citations

Places of action

Chart of shared publication
Lattner, Johanna
1 / 1 shared
Ruland, A.
2 / 2 shared
Peng, Yu-Hsuan
1 / 2 shared
Auernhammer, Günter K.
1 / 3 shared
Gupta, Krishna
2 / 3 shared
Werner, Carsten
1 / 45 shared
Krieg, Elisha
2 / 3 shared
Gerri, Claudia
1 / 1 shared
Hsiao, Syuan-Ku
1 / 2 shared
Gerri, C.
1 / 1 shared
Boye, S.
1 / 1 shared
Maitz, M. F.
1 / 1 shared
Auernhammer, G. K.
1 / 1 shared
Hsiao, S. K.
1 / 1 shared
Werner, C.
1 / 8 shared
Peng, Y.-H.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Lattner, Johanna
  • Ruland, A.
  • Peng, Yu-Hsuan
  • Auernhammer, Günter K.
  • Gupta, Krishna
  • Werner, Carsten
  • Krieg, Elisha
  • Gerri, Claudia
  • Hsiao, Syuan-Ku
  • Gerri, C.
  • Boye, S.
  • Maitz, M. F.
  • Auernhammer, G. K.
  • Hsiao, S. K.
  • Werner, C.
  • Peng, Y.-H.
OrganizationsLocationPeople

document

Dynamic matrices with DNA-encoded viscoelasticity for advanced cell and organoid culture

  • Ruland, A.
  • Honigmann, A.
  • Gupta, Krishna
  • Gerri, C.
  • Boye, S.
  • Maitz, M. F.
  • Auernhammer, G. K.
  • Krieg, Elisha
  • Hsiao, S. K.
  • Werner, C.
  • Peng, Y.-H.
Abstract

<jats:title>Abstract</jats:title><jats:p>3D cell and organoid cultures, which allow in vitro studies of organogenesis and carcinogenesis, rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack rational design and control over key cell-instructive properties. Herein, we report a class of fully synthetic hydrogels based on novel DNA libraries that self-assemble with ultra-high molecular weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables, for the first time, computationally predictable, systematic, and independent control over critical viscoelasticity parameters by merely changing DNA sequence information without affecting the compositional features of the system. This approach enables: (1) thermodynamic and kinetic control over network formation; (2) adjustable heat-activation for the homogeneous embedding of mammalian cells; and (3) dynamic tuning of stress relaxation times over three orders of magnitude, recapitulating the mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and hemocompatibility, and controllable degradation. DyNAtrix-based 3D cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts, and human placental organoids exhibit high viability (on par or superior to reference matrices), proliferation, and morphogenesis over several days to weeks. DyNAtrix thus represents a programmable and versatile precision matrix, paving the way for advanced approaches to biomechanics, biophysics, and tissue engineering.</jats:p><jats:sec><jats:title>Abstract Figure</jats:title><jats:fig id="ufig1" position="float" orientation="portrait" fig-type="figure"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="510936v1_ufig1" position="float" orientation="portrait" /></jats:fig></jats:sec>

Topics
  • impedance spectroscopy
  • polymer
  • viscoelasticity
  • forming
  • activation
  • molecular weight
  • size-exclusion chromatography