People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Loock, Frederik
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Experimental investigation of yield and hysteresis behaviour of an epoxy resin under cyclic compression in the large deformation regimecitations
- 2024A monolithic numerical model to predict the EMI shielding performance of lossy dielectric polymer nanocomposite shields in a rectangular waveguidecitations
- 2023Micro- and Nano-Mechanical Characterisation and Modelling of the Local Matrix Deformation in Fibrereinforced Epoxy
- 2023Accurate determination of stiffness and strength of graphene via AFM-based membrane deflectioncitations
- 2021Visco-Plastic Behaviour of a Polymer Matrix at the Fibre Diameter Length Scale: a Finite Element Mesoscale Model Relying on Shear Transformation Zone (STZ) Dynamics
- 2021Nanomechanics serving polymer-based composite researchcitations
- 2021Thermal ageing of electronic component solder joints for space applications
- 2021Implementation and calibration of a mesoscale model for amorphous plasticity based on shear transformation dynamicscitations
- 2020Processing maps based on polymerization modelling of thick methacrylic laminatescitations
- 2020Processing maps based on polymerization modelling of thick methacrylic laminatescitations
- 2019Deformation and fracture of PMMA with application to nanofoaming and adhesive joints
- 2019Tensile fracture of an adhesive jointcitations
- 2019The mechanics of solid-state nanofoamingcitations
- 2019The mechanics of solid-state nanofoaming.
- 2019Mechanical Properties of PMMA-Sepiolite Nanocellular Materials with a Bimodal Cellular Structurecitations
Places of action
Organizations | Location | People |
---|
article
The mechanics of solid-state nanofoaming
Abstract
<p>Solid-state nanofoaming experiments are conducted on two polymethyl methacrylate (PMMA) grades of markedly different molecular weight using CO<sub>2</sub> as the blowing agent. The sensitivity of porosity to foaming time and foaming temperature is measured. Also, the microstructure of the PMMA nanofoams is characterized in terms of cell size and cell nucleation density. A one-dimensional numerical model is developed to predict the growth of spherical, gasfilled voids during the solid-state foaming process. Diffusion of CO<sub>2</sub> within the PMMA matrix is sufficiently rapid for the concentration of CO<sub>2</sub> to remain almost uniform spatially. The foaming model makes use of experimentally calibrated constitutive laws for the uniaxial stress versus strain response of the PMMA grades as a function of strain rate and temperature, and the effect of dissolved CO<sub>2</sub> is accounted for by a shift in the glass transition temperature of the PMMA. The maximum achievable porosity is interpreted in terms of cell wall tearing and comparisons are made between the predictions of the model and nanofoaming measurements; it is deduced that the failure strain of the cell walls is sensitive to cell wall thickness.</p>