Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tan, Daniel

  • Google
  • 2
  • 8
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Chain‐Like Semiconductive Fillers for Dielectric Enhancement and Loss Reduction of Polymer Composites18citations
  • 2020Enhancement of microwave absorption bandwidth of MXene nanocomposites through macroscopic design18citations

Places of action

Chart of shared publication
Lin, Shuheng
1 / 1 shared
Wu, Xudong
1 / 3 shared
Ivry, Yachin
1 / 3 shared
Beilin, Vadim
1 / 5 shared
Shter, Gennady E.
1 / 3 shared
Grader, Gideon S.
1 / 5 shared
Kumar, T. R. Suresh
1 / 1 shared
Bora, Pritom J.
1 / 1 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Lin, Shuheng
  • Wu, Xudong
  • Ivry, Yachin
  • Beilin, Vadim
  • Shter, Gennady E.
  • Grader, Gideon S.
  • Kumar, T. R. Suresh
  • Bora, Pritom J.
OrganizationsLocationPeople

article

Enhancement of microwave absorption bandwidth of MXene nanocomposites through macroscopic design

  • Tan, Daniel
  • Kumar, T. R. Suresh
  • Bora, Pritom J.
Abstract

<jats:p>MXene, the new family of two-dimensional materials having numerous nanoscale layers, is being considered as a novel microwave absorption material. However, MXene/functionalized MXene-loaded polymer nanocomposites exhibit narrow reflection loss (RL) bandwidth (RL less than or equal to −10 dB). In order to enhance the microwave absorption bandwidth of MXene hybrid-matrix materials, for the first time, macroscopic design approach is carried out for TiO<jats:sub>2</jats:sub>-Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub>MXene and Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>@TiO<jats:sub>2</jats:sub>-Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub>MXene hybrids through simulation. The simulated results indicate that use of pyramidal meta structure of MXene can significantly tune the RL bandwidth. For optimized MXene hybrid-matrix materials pyramid pattern, the bandwidth enhances to 3–18 GHz. Experimental RL value well matched with the simulated RL. On the other hand, the optimized Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>@TiO<jats:sub>2</jats:sub>-Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub>hybrid exhibits two specific absorption bandwidths (minimum RL value - −47 dB). Compared with other two-dimensional nanocomposites such as graphene or Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>-graphene, MXene hybrid-matrix materials show better microwave absorption bandwidth in macroscopic pattern.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • simulation
  • laser emission spectroscopy
  • two-dimensional