Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parnell, William J.

  • Google
  • 21
  • 32
  • 531

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (21/21 displayed)

  • 2022Deeply subwavelength giant monopole elastodynamic metacluster resonatorscitations
  • 2022A unified framework for linear thermo-visco-elastic wave propagation including the effects of stress-relaxation3citations
  • 2022Transition from equatorial to whole-shell buckling in embedded spherical shells under axisymmetric far-field loading3citations
  • 2022Enhanced elastodynamic resonance via co-dipole metaclusters2citations
  • 2021Geometrical and Mechanical Characterisation of Hollow Thermoplastic Microspheres for Syntactic Foam Applications24citations
  • 2019Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformation36citations
  • 2018Thermo-viscous damping of acoustic waves in narrow channels: A comparison of effects in air and water.citations
  • 2018Thermo-viscous damping of acoustic waves in narrow channels: a comparison of effects in air and water32citations
  • 2018The inflation of viscoelastic balloons and hollow viscera31citations
  • 2018The inflation of viscoelastic balloons and hollow viscera31citations
  • 2018Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure5citations
  • 2015Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite materialcitations
  • 2013Predicting the pressure-volume curve of an elastic microsphere composite22citations
  • 2013Predicting the pressure-volume curve of an elastic microsphere composite22citations
  • 2012Employing pre-stress to generate finite cloaks for antiplane elastic waves68citations
  • 2012Homogenization methods to approximate the effective response of random fibre-reinforced Composites22citations
  • 2012Nonlinear pre-stress for cloaking from antiplane elastic waves74citations
  • 2011The effective wavenumber of a pre-stressed nonlinear microvoided composite2citations
  • 2009The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization56citations
  • 2008Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I-Theory48citations
  • 2007Effective wave propagation in a prestressed nonlinear elastic composite bar50citations

Places of action

Chart of shared publication
Cotterill, Philip
3 / 4 shared
Nigro, David
5 / 7 shared
Pinfield, Valerie J.
1 / 6 shared
Assier, Raphael
1 / 2 shared
Gower, Artur L.
1 / 3 shared
Thorpe, Maria
1 / 1 shared
Smith, Michael
2 / 29 shared
Abrahams, I. David
7 / 10 shared
Jones, Gareth Wyn
1 / 1 shared
Touboul, Marie
1 / 1 shared
Curd, Matthew
1 / 5 shared
Gajjar, Parmesh
1 / 3 shared
Morrison, Neil
1 / 3 shared
Yousaf, Zeshan
1 / 10 shared
Pascalis, Riccardo De
3 / 3 shared
Garcia-Neefjes, Erik
1 / 1 shared
Cotterill, Philip A.
1 / 1 shared
Shearer, Tom
3 / 6 shared
Grundy, David
2 / 2 shared
De Pascalis, Riccardo
2 / 3 shared
Daly, Donna
2 / 2 shared
Voisey, Ruth
1 / 1 shared
Rowley, William
1 / 1 shared
Etaix, Nicolas
1 / 1 shared
Lamb, John
1 / 1 shared
Abrahams, Ian
1 / 1 shared
David Abrahams, I.
1 / 3 shared
Norris, Andrew N.
1 / 1 shared
Hazel, Andrew L.
1 / 3 shared
Willoughby, Natasha
1 / 1 shared
Abrahams, I. D.
2 / 3 shared
Grimal, Quentin
1 / 3 shared
Chart of publication period
2022
2021
2019
2018
2015
2013
2012
2011
2009
2008
2007

Co-Authors (by relevance)

  • Cotterill, Philip
  • Nigro, David
  • Pinfield, Valerie J.
  • Assier, Raphael
  • Gower, Artur L.
  • Thorpe, Maria
  • Smith, Michael
  • Abrahams, I. David
  • Jones, Gareth Wyn
  • Touboul, Marie
  • Curd, Matthew
  • Gajjar, Parmesh
  • Morrison, Neil
  • Yousaf, Zeshan
  • Pascalis, Riccardo De
  • Garcia-Neefjes, Erik
  • Cotterill, Philip A.
  • Shearer, Tom
  • Grundy, David
  • De Pascalis, Riccardo
  • Daly, Donna
  • Voisey, Ruth
  • Rowley, William
  • Etaix, Nicolas
  • Lamb, John
  • Abrahams, Ian
  • David Abrahams, I.
  • Norris, Andrew N.
  • Hazel, Andrew L.
  • Willoughby, Natasha
  • Abrahams, I. D.
  • Grimal, Quentin
OrganizationsLocationPeople

article

The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

  • Parnell, William J.
  • Grimal, Quentin
Abstract

Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. © 2008 The Royal Society.

Topics
  • impedance spectroscopy
  • pore
  • tomography
  • nanoindentation
  • elasticity
  • porosity
  • homogenization
  • scanning auger microscopy