People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Parnell, William J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Deeply subwavelength giant monopole elastodynamic metacluster resonators
- 2022A unified framework for linear thermo-visco-elastic wave propagation including the effects of stress-relaxationcitations
- 2022Transition from equatorial to whole-shell buckling in embedded spherical shells under axisymmetric far-field loadingcitations
- 2022Enhanced elastodynamic resonance via co-dipole metaclusterscitations
- 2021Geometrical and Mechanical Characterisation of Hollow Thermoplastic Microspheres for Syntactic Foam Applicationscitations
- 2019Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformationcitations
- 2018Thermo-viscous damping of acoustic waves in narrow channels: A comparison of effects in air and water.
- 2018Thermo-viscous damping of acoustic waves in narrow channels: a comparison of effects in air and watercitations
- 2018The inflation of viscoelastic balloons and hollow visceracitations
- 2018The inflation of viscoelastic balloons and hollow visceracitations
- 2018Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructurecitations
- 2015Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material
- 2013Predicting the pressure-volume curve of an elastic microsphere compositecitations
- 2013Predicting the pressure-volume curve of an elastic microsphere compositecitations
- 2012Employing pre-stress to generate finite cloaks for antiplane elastic wavescitations
- 2012Homogenization methods to approximate the effective response of random fibre-reinforced Compositescitations
- 2012Nonlinear pre-stress for cloaking from antiplane elastic wavescitations
- 2011The effective wavenumber of a pre-stressed nonlinear microvoided compositecitations
- 2009The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenizationcitations
- 2008Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I-Theorycitations
- 2007Effective wave propagation in a prestressed nonlinear elastic composite barcitations
Places of action
Organizations | Location | People |
---|
article
The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization
Abstract
Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. © 2008 The Royal Society.