Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coulon, P. M.

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Point Defects in InGaN/GaN Core-Shell Nanorods7citations

Places of action

Chart of shared publication
Shields, Philip, A.
1 / 13 shared
Oliver, R. A.
1 / 18 shared
Kusch, G.
1 / 13 shared
Girgel, I.
1 / 3 shared
Loeto, K.
1 / 4 shared
Fairclough, S. M.
1 / 2 shared
Boulbar, E. Le
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Shields, Philip, A.
  • Oliver, R. A.
  • Kusch, G.
  • Girgel, I.
  • Loeto, K.
  • Fairclough, S. M.
  • Boulbar, E. Le
OrganizationsLocationPeople

article

Point Defects in InGaN/GaN Core-Shell Nanorods

  • Shields, Philip, A.
  • Oliver, R. A.
  • Kusch, G.
  • Girgel, I.
  • Loeto, K.
  • Fairclough, S. M.
  • Boulbar, E. Le
  • Coulon, P. M.
Abstract

<p>Core-shell nanorod based light-emitting diodes (LEDs) with their exposed non-polar surfaces have the potential to overcome the limitations of planar LEDs by circumventing the quantum confined stark effect. In this experiment, InGaN/GaN core-shell nanorods were fabricated by a combination of top-down etching and bottom-up regrowth using metal-organic vapour phase epitaxy. When viewing the nanorods along their long axis, monochromatic cathodoluminescence maps taken at the GaN near-band-edge emission energy (3.39 eV) reveal a ring-like region of lower emission intensity. The diameter of this ring is found to be 530 (±20)nm corresponding to the ∼510 nm diameter nickel etch masks used to produce the initial GaN nanopillars. Thus, the dark ring corresponds to the regrowth interface. To understand the origin of the ring, scanning transmission electron microscopy (STEM) and cathodoluminescence (CL) hyperspectral mapping at 10K were performed. STEM imaging reveals the absence of extended defects in the nanorods and indeed near the regrowth interface. Monochromatic CL maps recorded at 10K show that the ring remains dark for monochromatic maps taken at the GaN near-band-edge emission energy (3.47 eV) but is bright when considering the donor-acceptor pair emission energy (3.27 eV). This peculiar anticorrelation indicates that the dark ring originates from an agglomeration of point defects associated with donor-acceptor pair emission. The point defects are incorporated and buried at the GaN regrowth interface from the chemical and/or physical damage induced by etching and lower the radiative recombination rate; limiting the radiative efficiency close to the regrowth interface. </p>

Topics
  • impedance spectroscopy
  • surface
  • nickel
  • phase
  • experiment
  • transmission electron microscopy
  • etching
  • point defect