People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kelly, Daniel
Trinity College Dublin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Chemical etching of Ti-6Al-4V biomaterials fabricated by selective laser melting enhances mesenchymal stromal cell mineralizationcitations
- 2023Integrating Melt Electrowriting and Fused Deposition Modeling to Fabricate Hybrid Scaffolds Supportive of Accelerated Bone Regenerationcitations
- 2023Exfoliablity, magnetism, energy storage and stability of metal thiophosphate nanosheets made in liquid medium.citations
- 2020Synthesis of new M-layer solid-solution 312 MAX phases (Ta1-xTix)3AlC2 (x = 0.05, 0.1, 0.2, 0.33 or 0.5), and their corresponding MXenes
- 2018Nanometer Resolution Elemental Mapping in Graphene-based TEM Liquid Cellscitations
Places of action
Organizations | Location | People |
---|
article
Exfoliablity, magnetism, energy storage and stability of metal thiophosphate nanosheets made in liquid medium.
Abstract
<jats:title>Abstract</jats:title><jats:p>The family of antiferromagnetic layered metal hexathiohypo diphosphates, M2P2S6 represents a versatile class of materials, particularly interesting for fundamental studies on magnetic properties in low dimensional structures, and yet exhibiting great potential for a broad variety of applications including catalysis, energy storage and conversion, and spintronics. In this work, three representatives of this family of 2D materials (M = Fe, Ni, and Mn) are exfoliated in the liquid phase under inert conditions and the nanosheet’s properties are studied in detail for different sizes of all three compounds. Centrifugation-based size selection is performed for this purpose. The exfoliability and structural integrity of the nanosheets is studied by statistical AFM and TEM measurements. Further, we report size and thickness dependent optical properties and spectroscopic metrics for the average material dimensions in dispersion, as well as the nanomaterials’ magnetic response using a combination of cryo-Raman and SQUID measurements. Finally, the material stability is studied semi-quantitatively, using time and temperature dependent extinction and absorbance spectroscopy, enabling the determination of the materials’ half-life, portion of reacted substance and the macroscopic activation energy for the degradation.</jats:p>