People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hasan, Gamil Gamal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Biogenic ZnO/CuO/Fe2O3 Nanocomposite: A Groundbreaking Approach for Enhanced Degradation Capabilities and Reusability in Dye Removal Applicationscitations
- 2024Eco-Friendly Synthesis of Al2O3 Nanoparticles: Comprehensive Characterization Properties, Mechanics, and Photocatalytic Dye Adsorption Studycitations
- 2024Nanostructured Mn@NiO composite for addressing multi-pollutant challenges in petroleum-contaminated watercitations
- 2024Green synthesis of Mn 3 O 4 @CoO nanocomposites using Rosmarinus officinalis L. extract for enhanced photocatalytic hydrogen production and CO 2 conversioncitations
- 2023High-efficiency photocatalytic degradation of antibiotics and molecular docking study to treat the omicron variant of COVID-19 infection using biosynthesized ZnO@Fe<sub>3</sub>O<sub>4</sub> nanocompositescitations
- 2023Enhanced Strength and Flexibility of Ni-Co Nanocomposites through Electrodeposition with SiC Nanoparticles and SDS Additive
- 2022Effect of sodium dodecyl sulfate and different SiC quantities on electrodeposited Ni-Co alloy coatingscitations
Places of action
Organizations | Location | People |
---|
article
Effect of sodium dodecyl sulfate and different SiC quantities on electrodeposited Ni-Co alloy coatings
Abstract
<jats:title>Abstract</jats:title><jats:p>Ni-Co nanocomposites Prepared by electrodeposition in a modified Watts bath containing various quantities of silicon carbide SiC and the organic additive sodium dodecyl sulfate SDS as a surfactant. The influence of nanoparticle incorporation on the electrodeposit microstructure, mechanical characteristics, and deformation process was studied. Vickers micro-hardness and weight loss tests were used to study the mechanical properties and morphology. The microstructure has also been analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Co-deposition of uniformly dispersed SiC particles, on the other hand, was found to improve the extreme tensile strength of the deposits significantly; SDS lowered the surface tension, allowing the SiC particles to fill in all remaining gaps to achieve a homogeneous surface. A process involving atoms that can dramatically improve flexibility. The incorporation of SiC particles and raising the strain rate encouraged a ductile fracture mode in a nano-crystalline Ni-Co matrix, which demonstrated a mixed mod behavior of flexible and brittle fracture; it was evident that the addition of SDS increases the concentration of SiC particles in general on Ni-Co samples. Moreover, compare Ni-Co with various amounts of SiC and Ni-Co/SiC with adding SDS. Furthermore, to achieve the highest possible electroplating efficiency.</jats:p>